[1]
|
Yadav R, Yadav N, Pal M, Goutam U. 2013. Multiple shoot proliferation, bulblet induction and evaluation of genetic stability in Asiatic hybrid lily (Lilium sp.). Indian Journal of Plant Physiology 18:354−59 doi: 10.1007/s40502-014-0060-4
CrossRef Google Scholar
|
[2]
|
Lim KB, Gonzalez RB, Zhou S, Ramanna MS, van Tuyl JM. 2007. Interspecific hybridization in Lily (Lilium): taxonomic and commercial aspects of using species hybrids in breeding. In Floriculture Ornamental and Plant Biotechnology. Volume 5. Carrollton, GA, USA: Global Science Books. pp. 138−45.
|
[3]
|
Tang N, Ju X, Hu Y, Jia R, Tang D. 2020. Effects of Temperature and plant growth regulators on the scale propagation of Lilium davidii var. unicolor. HortScience 55:870−75 doi: 10.21273/HORTSCI14916-20
CrossRef Google Scholar
|
[4]
|
Wang Y, Jiao Y. 2018. Auxin and above-ground meristems. Journal of Experimental Botany 69:147−54 doi: 10.1093/jxb/erx299
CrossRef Google Scholar
|
[5]
|
Li X, Wang C, Cheng J, Zhang J, da Silva JAT, et al. 2014. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor. BMC Plant Biology 14:358 doi: 10.1186/s12870-014-0358-4
CrossRef Google Scholar
|
[6]
|
Yang P, Xu L, Xu H, Tang Y, He G, et al. 2017. Histological and transcriptomic analysis during bulbil formation in Lilium lancifolium. Frontiers in Plant Science 8:1508 doi: 10.3389/fpls.2017.01508
CrossRef Google Scholar
|
[7]
|
Liang J, Wu Z, Zheng J, Koskela EA, Fan L, et al. 2022. The GATA factor HANABA TARANU promotes runner formation by regulating axillary bud initiation and outgrowth in cultivated strawberry. The Plant Journal 110:1237−54 doi: 10.1111/tpj.15759
CrossRef Google Scholar
|
[8]
|
Xu J, Li Q, Yang L, Li X, Wang Z, et al. 2020. Changes in carbohydrate metabolism and endogenous hormone regulation during bulblet initiation and development in Lycoris radiata. BMC Plant Biology 20:180 doi: 10.1186/s12870-020-02394-4
CrossRef Google Scholar
|
[9]
|
Matsuo T, Mizuno T. 1974. Changes in the amounts of two kinds of reserve glucose-containing polysaccharides during germination of the Easter lity bulb. Plant Cell and Physiology 15:555−58 doi: 10.1093/oxfordjournals.pcp.a075036
CrossRef Google Scholar
|
[10]
|
Ranwala AP, Miller WB. 2010. Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high-performance anion-exchange chromatography with pulsed amperometric detection. New Phytologist 180:421−33 doi: 10.1111/j.1469-8137.2008.02585.x
CrossRef Google Scholar
|
[11]
|
Wu Y, Ren Z, Gao C, Sun M, Li S, et al. 2020. Change in sucrose cleavage pattern and rapid starch accumulation govern lily shoot-to-bulblet transition in vitro. Frontiers in Plant Science 11:564713 doi: 10.3389/fpls.2020.564713
CrossRef Google Scholar
|
[12]
|
Koch K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7:235−46 doi: 10.1016/j.pbi.2004.03.014
CrossRef Google Scholar
|
[13]
|
Ren Z, Xu Y, Lvy X, Zhang D, Gao C, et al. 2021. Early sucrose degradation and the dominant sucrose cleavage pattern influence Lycoris sprengeri bulblet regeneration in vitro. International Journal of Molecular Sciences 22:11890 doi: 10.3390/ijms222111890
CrossRef Google Scholar
|
[14]
|
Ren Z, Zhang D, Jiao C, Li D, Wu Y, et al. 2022. Comparative transcriptome and metabolome analyses identified the mode of sucrose degradation as a metabolic marker for early vegetative propagation in bulbs of Lycoris. The Plant Journal 112:115−34 doi: 10.1111/tpj.15935
CrossRef Google Scholar
|
[15]
|
Tang B, Wang S, Wang S, Wang H, Zhang J, et al. 2018. Invertebrate trehalose-6-phosphate synthase gene: genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology 9:30 doi: 10.3389/fphys.2018.00030
CrossRef Google Scholar
|
[16]
|
Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, et al. 2021. Regulation of shoot branching in arabidopsis by trehalose 6-phosphate. New Phytologist 229:2135−51 doi: 10.1111/nph.17006
CrossRef Google Scholar
|
[17]
|
Wu Y, Xia Y, Zhang J, Du F, Zhang L, et al. 2016. Low humic acids promote in vitro lily bulblet enlargement by enhancing roots growth and carbohydrate metabolism. Journal of Zhejiang University Science B 17:892−904 doi: 10.1631/jzus.B1600231
CrossRef Google Scholar
|
[18]
|
Mo J, Qu Y, He G, Yang P, Wang L, et al. 2022. Effect of exogenous 6-BA induced Lilium lancifolium bulblets formation in aerial cultivation. Scientia Horticulturae 309:111644 doi: 10.1016/j.scienta.2022.111644
CrossRef Google Scholar
|
[19]
|
Xu J, Li Q, Li Y, Yang L, Zhang Y, et al. 2020. Effect of exogenous gibberellin, paclobutrazol, abscisic acid, and ethrel application on bulblet development in Lycoris radiata. Frontiers in Plant Science 11:615547 doi: 10.3389/fpls.2020.615547
CrossRef Google Scholar
|
[20]
|
He G, Yang P, Tang Y, Cao Y, Qi X, et al. 2020. Mechanism of exogenous cytokinins inducing bulbil formation in Lilium lancifolium in vitro. Plant Cell Reports 39:861−72 doi: 10.1007/s00299-020-02535-x
CrossRef Google Scholar
|
[21]
|
He G, Cao Y, Wang J, Song M, Bi M, et al. 2022. WUSCHEL-related homeobox genes cooperate with cytokinin to promote bulbil formation in Lilium lancifolium. Plant Physiology 190:387−402 doi: 10.1093/plphys/kiac259
CrossRef Google Scholar
|
[22]
|
Salachna P, Mikiciuk M, Zawadzińska A, Piechocki R, Ptak P, et al. 2020. Changes in growth and physiological parameters of ×Amarine following an exogenous application of gibberellic acid and methyl jasmonate. Agronomy 10:980 doi: 10.3390/agronomy10070980
CrossRef Google Scholar
|
[23]
|
Xia L. 2019. The role of auxin signaling pathway related genes in the development of bulbil for two species of plant. Thesis. Guiyang: Guizhou University.
|
[24]
|
Sun H, Li T, Li Y. 2005. Physiological mechanism of metabolism of carbohydrate, phenols, free amino acid and endogenous hormones in middle scales of Lilium davidii var. unicolor bulbs stored at low temperature for dormancy release. Scientia Agricultura Sinica 38:376−82
Google Scholar
|
[25]
|
Zhang Y, Yong Y, Wang Q, Lu Y. 2018. Physiological and molecular changes during lily underground stem axillary bulbils formation. Russian Journal of Plant Physiology 65:372−83 doi: 10.1134/S1021443718030172
CrossRef Google Scholar
|
[26]
|
Wu Y, Li Y, Ma Y, Zhang L, Ren ZM, et al. 2017. Hormone and antioxidant responses of Lilium Oriental hybrids 'Sorbonne' bulblets to humic acid treatments in vitro. Journal of Horticultural Science and Biotechnology 92:155−67 doi: 10.1080/14620316.2016.1240019
CrossRef Google Scholar
|
[27]
|
Luo F, Li Q, Yu L, Wang C, Qi H. 2020. High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt. Plant Physiology and Biochemistry 154:770−81 doi: 10.1016/j.plaphy.2020.05.033
CrossRef Google Scholar
|
[28]
|
Du C, Cai C, Lu Y, Li Y, Xie Z. 2023. Identification and expression analysis of invertase family genes during grape (Vitis vinifera L.) berry development under CPPU and GA treatment. Molecular Genetics and Genomics 298:777−89 doi: 10.1007/s00438-023-02015-3
CrossRef Google Scholar
|
[29]
|
Qiu G, Zhuang Q, Li Y, Li S, Chen C, et al. 2020. Correlation between fruit weight and nutritional metabolism during development in CPPU-treated Actinidia chinensis 'Hongyang'. PeerJ 8:e9724 doi: 10.7717/peerj.9724
CrossRef Google Scholar
|
[30]
|
Cong L, Wu T, Liu H, Wang H, Zhang H, et al. 2020. CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in 'Dangshansu' pear. Horticulture Research 7:68 doi: 10.1038/s41438-020-0285-5
CrossRef Google Scholar
|
[31]
|
Liu Y, Li Y, Guo H, Lv B, Feng J, et al. 2023. Gibberellin biosynthesis is required for CPPU-induced parthenocarpy in melon. Horticulture Research 10:uhad084 doi: 10.1093/hr/uhad084
CrossRef Google Scholar
|
[32]
|
Ren Z, Xia Y, She L, Xiao Y, Zhang H, et al. 2017. Biochemical and physiological responses of Lycoris sprengeri bulblets (Amaryllidaceae) to exogenously applied N-(2-chloro-4-pyridyl)-N1-phenylurea (CPPU). Pakistan Journal of Botany 49:1415−21
Google Scholar
|
[33]
|
She L, Xia Y, Chang L, Xiao Y, Ren Z, et al. 2014. Biochemical and physiological responses of bulblets of Lycoris aurea to exogenously applied N-(2-chloro-4-pyridyl)-N1-phenylurea. Journal of Horticultural Science & Biotechnology 89:549−56 doi: 10.1080/14620316.2014.11513119
CrossRef Google Scholar
|
[34]
|
Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P. 2011. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany 62:2431−52 doi: 10.1093/jxb/err004
CrossRef Google Scholar
|
[35]
|
Letham DS. 1963. Zeatin, a factor inducing cell division isolated from Zea mays. Life Sciences 2:569−73 doi: 10.1016/0024-3205(63)90108-5
CrossRef Google Scholar
|
[36]
|
Al-Khayria JM, Al-Bahrany AM. 2001. Silver nitrate and 2-isopentyladenine promote somatic embryogenesis in date palm (Phoenix dactylifera L.). Scientia Horticulturae 89:291−98 doi: 10.1016/S0304-4238(00)00244-2
CrossRef Google Scholar
|
[37]
|
Ruf S, Forner J, Hasse C, Kroop X, Seeger S, et al. 2019. High-efficiency generation of fertile transplastomic Arabidopsis plants. Nature Plants 5:282−89 doi: 10.1038/s41477-019-0359-2
CrossRef Google Scholar
|
[38]
|
dos Santos Alves I, Carmazini VCB, dos Santos CD, de Almeida JAS. 2018. 2- Isopentenyladenine in the induction of direct somatic embryogenesis capacity of Coffea arabica L. Ciência Rural 48:e20180001 doi: 10.1590/0103-8478cr20180001
CrossRef Google Scholar
|
[39]
|
Zhang J, Gai M, Xue B, Jia N, Wang C, et al. 2017. The use of miRNAs as reference genes for miRNA expression normalization during Lilium somatic embryogenesis by real-time reverse transcription PCR analysis. Plant Cell, Tissue and Organ Culture 129:105−18 doi: 10.1007/s11240-016-1160-9
CrossRef Google Scholar
|
[40]
|
Ren Z, Xia Y, Zhang D, Li Y, Wu Y. 2017. Cytological analysis of the bulblet initiation and development in Lycoris species. Scientia Horticulturae 218:72−79 doi: 10.1016/j.scienta.2017.02.027
CrossRef Google Scholar
|
[41]
|
Yang T, Jiao Y, Wang Y. 2023. Stem cell basis of shoot branching. Plant and Cell Physiology 64:291−96 doi: 10.1093/pcp/pcac165
CrossRef Google Scholar
|
[42]
|
Wang J, Tian C, Zhang C, Shi B, Cao X, et al. 2017. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. The Plant Cell 29:1373−87 doi: 10.1105/tpc.16.00579
CrossRef Google Scholar
|
[43]
|
To JPC, Kieber JJ. 2008. Cytokinin signaling: two-components and more. Trends in Plant Science 13:85−92 doi: 10.1016/j.tplants.2007.11.005
CrossRef Google Scholar
|
[44]
|
Fang S, Yang C, Ali MM, Lin M, Tian S, et al. 2022. Transcriptome analysis reveals the molecular regularity mechanism underlying stem bulblet formation in oriental lily 'siberia'; functional characterization of the LoLOB18 gene. International Journal of Molecular Sciences 23:15246 doi: 10.3390/ijms232315246
CrossRef Google Scholar
|
[45]
|
Ye R, Wang M, Du H, Chhajed S, Koh J, et al. 2022. Glucose-driven TOR-FIE-PRC2 signalling controls plant development. Nature 609:986−93 doi: 10.1038/s41586-022-05171-5
CrossRef Google Scholar
|
[46]
|
Long W, Guo H, Xiao G, Wang Q. 2011. Changes in hormone and sugar content during the growth of yam bead buds. Journal of Horticulture 38:753−60 (in Chinese)
Google Scholar
|
[47]
|
Shi B, Zhang C, Tian C, Wang J, Wang Q, et al. 2016. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis. PLoS Genetics 12:e1006168 doi: 10.1371/journal.pgen.1006168
CrossRef Google Scholar
|
[48]
|
Wang Y, Wang J, Shi B, Yu T, Qi J, et al. 2014. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. The Plant Cell 26:2055−67 doi: 10.1105/tpc.114.123083
CrossRef Google Scholar
|
[49]
|
Skoog F, Miller CO. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology 11:118−30
Google Scholar
|
[50]
|
Moreno-Pachón N. 2017. Mechanisms of vegetative propagation in bulbs: a molecular approach. Thesis. Wageningen, The Netherlands: Wageningen University. 178 pp. https://doi.org/10.18174/423177
|
[51]
|
Podwyszynska M. 2006. Improvement of bulb formation in micropropagated tulips by treatment with NAA and paclobutrazol or ancymidol. Acta Horticulturae 725:679−84 doi: 10.17660/actahortic.2006.725.94
CrossRef Google Scholar
|
[52]
|
Gong L. 2012. The Research of developmental mechanism during the axillary buds regeneration for the in vitro culture of Lycoris chinensis. Thesis. Nanjing, China: Nanjing Forestry University.
|
[53]
|
Luo Z, Janssen BJ, Snowden KC. 2021. The molecular and genetic regulation of shoot branching. Plant Physiology 187:1033−44 doi: 10.1093/plphys/kiab071
CrossRef Google Scholar
|
[54]
|
Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, et al. 2017. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). The Plant Journal 92:611−23 doi: 10.1111/tpj.13705
CrossRef Google Scholar
|
[55]
|
Müller D, Leyser O. 2011. Auxin, cytokinin and the control of shoot branching. Annals of Botany 107:1203−12 doi: 10.1093/aob/mcr069
CrossRef Google Scholar
|
[56]
|
Chabikwa TG, Brewer PB, Beveridge CA. 2019. Initial bud outgrowth occurs independent of auxin flow from out of buds. Plant Physiology 179:55−65 doi: 10.1104/pp.18.00519
CrossRef Google Scholar
|
[57]
|
Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA. 2019. An update on the signals controlling shoot branching. Trends in Plant Science 24:220−36 doi: 10.1016/j.tplants.2018.12.001
CrossRef Google Scholar
|
[58]
|
Zhang D, Zhao J, An X, Jin X. 2014. Effect of plant growth regulators on scale cutting propagation of Lilium davidii var. unicolor. North Horticulture 20:68−71
Google Scholar
|
[59]
|
Sun L, Sun X, Zhang Z, Li Y, Luo F. 2008. Effect of phytohormone on bulb scale cutting propagation of Hyacinthus orientalis. Acta Agriculturae Boreali-Occidentalis Sinica 17:290−93 doi: 10.3969/j.issn.1004-1389.2008.03.063
CrossRef Google Scholar
|
[60]
|
Zhang W, Song L, da Silva JA, Sun H. 2013. Effects of temperature, plant growth regulators and substrates and changes in carbohydrate content during bulblet formation by twin scale propagation in Hippeastrum vittatum 'Red lion'. Scientia Horticulturae 160:230−37 doi: 10.1016/j.scienta.2013.06.001
CrossRef Google Scholar
|
[61]
|
Choubane D, Rabot A, Mortreau E, Legourrierec J, Péron T, et al. 2012. Photocontrol of bud burst involves gibberellin biosynthesis in Rosa sp. Journal of Plant Physiology 169:1271−80 doi: 10.1016/j.jplph.2012.04.014
CrossRef Google Scholar
|
[62]
|
Feng J, Cheng L, Zhu Z, Yu F, Dai C, et al. 2021. GRAS transcription factor LOSS OF AXILLARY MERISTEMS is essential for stamen and runner formation in wild strawberry. Plant Physiology 186:1970−84 doi: 10.1093/plphys/kiab184
CrossRef Google Scholar
|
[63]
|
Ni J, Gao C, Chen M, Pan B, Ye K, et al. 2015. Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas. Plant and Cell Physiology 56:1655−66 doi: 10.1093/pcp/pcv089
CrossRef Google Scholar
|
[64]
|
Zhang Q, Wang J, Wang L, Wang J, Wang Q, et al. 2020. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA-SPL9 complex activity. Journal of Integrative Plant Biology 62:421−32 doi: 10.1111/jipb.12818
CrossRef Google Scholar
|
[65]
|
Cheng L, Wang Y, Liu Y, Zhang Q, Gao H, et al. 2018. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro. Physiologia Plantarum 163:103−23 doi: 10.1111/ppl.12670
CrossRef Google Scholar
|