[1]
|
Ondrasek G, Rengel Z. 2021. Environmental salinization processes: detection, implications & solutions. Science of the Total Environment 754:142432 doi: 10.1016/j.scitotenv.2020.142432
CrossRef Google Scholar
|
[2]
|
Okur B, Örçen N. 2020. Soil salinization and climate change. In Climate Change and Soil Interactions, eds. Prasad MNV, Pietrzykowski M. Amsterdam: Elsevier. pp. 331−50. https://doi.org/10.1016/b978-0-12-818032-7.00012-6
|
[3]
|
Hailu B, Mehari H. 2021. Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: a review. Journal of Natural Sciences Research 12:1−10 doi: 10.7176/JNSR/12-3-01
CrossRef Google Scholar
|
[4]
|
Morton MJL, Awlia M, Al-Tamimi N, Saade S, Pailles Y, et al. 2019. Salt stress under the scalpel – dissecting the genetics of salt tolerance. The Plant Journal 97:148−63 doi: 10.1111/tpj.14189
CrossRef Google Scholar
|
[5]
|
Eswar D, Karuppusamy R, Chellamuthu S. 2021. Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability 50:310−18 doi: 10.1016/j.cosust.2020.10.015
CrossRef Google Scholar
|
[6]
|
Syed A, Sarwar G, Shah SH, Muhammad S. 2021. Soil salinity research in 21st century in Pakistan: its impact on availability of plant nutrients, growth and yield of crops. Communications in Soil Science and Plant Analysis 52:183−200 doi: 10.1080/00103624.2020.1854294
CrossRef Google Scholar
|
[7]
|
Ashrafuzzaman M. 2023. Local context of climate change adaptation in the south-western coastal region of Bangladesh. Sustainability 15:6664 doi: 10.3390/su15086664
CrossRef Google Scholar
|
[8]
|
Awlia M, Nigro A, Fajkus J, Schmoeckel SM, Negrão S, et al. 2016. High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Frontiers in Plant Science 7:1414 doi: 10.3389/fpls.2016.01414
CrossRef Google Scholar
|
[9]
|
Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. 2020. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry 156:64−77 doi: 10.1016/j.plaphy.2020.08.042
CrossRef Google Scholar
|
[10]
|
Liu F, Huang Q, Du Y, Li S, Cai M, et al. 2023. The interference of marine accidental and persistent petroleum hydrocarbons pollution on primary biomass and trace elements sink. Science of The Total Environment 883:163812 doi: 10.1016/j.scitotenv.2023.163812
CrossRef Google Scholar
|
[11]
|
Nowicka B. 2022. Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environmental Science and Pollution Research 29:16860−911 doi: 10.1007/s11356-021-18419-w
CrossRef Google Scholar
|
[12]
|
Luo J, Shi W, Li H, Janz D, Luo Z. 2016. The conserved salt-responsive genes in the roots of Populus × canescens and Arabidopsis thaliana. Environmental and Experimental Botany 129:48−56 doi: 10.1016/j.envexpbot.2015.12.008
CrossRef Google Scholar
|
[13]
|
Cao W, Liu J, He X, Mu R, Zhou H, et al. 2007. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiology 143:707−19 doi: 10.1104/pp.106.094292
CrossRef Google Scholar
|
[14]
|
Pérez-Patricio M, Camas-Anzueto JL, Sanchez-Alegría A, Aguilar-González A, Gutiérrez-Miceli F, et al. 2018. Optical method for estimating the chlorophyll contents in plant leaves. Sensors 18:650 doi: 10.3390/s18020650
CrossRef Google Scholar
|
[15]
|
Tang Y, Ren J, Liu C, Jiang J, Yang H, et al. 2021. Genetic characteristics and QTL analysis of the soluble sugar content in ripe tomato fruits. Scientia Horticulturae 276:109785 doi: 10.1016/j.scienta.2020.109785
CrossRef Google Scholar
|
[16]
|
Yonny ME, Rodríguez Torressi A, Nazareno MA, Cerutti S. 2017. Development of a novel, sensitive, selective, and fast methodology to determine malondialdehyde in leaves of melon plants by ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of Analytical Methods in Chemistry 2017:4327954 doi: 10.1155/2017/4327954
CrossRef Google Scholar
|
[17]
|
Ragab G, Saad-Allah K. 2021. Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. Journal of Plant Growth Regulation 40:1894−1902 doi: 10.1007/s00344-020-10240-y
CrossRef Google Scholar
|
[18]
|
Abid M, Zhang Y, Li Z, Bai D, Zhong Y, et al. 2020. Effect of Salt stress on growth, physiological and biochemical characters of Four kiwifruit genotypes. Scientia Horticulturae 271:109473 doi: 10.1016/j.scienta.2020.109473
CrossRef Google Scholar
|
[19]
|
Elhakem AH. 2020. Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytes. Plant, Soil and Environment 66:533−41 doi: 10.17221/441/2020-PSE
CrossRef Google Scholar
|
[20]
|
Rahneshan Z, Nasibi F, Moghadam AA. 2018. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of plant interactions 13:73−82 doi: 10.1080/17429145.2018.1424355
CrossRef Google Scholar
|
[21]
|
Kesawat MS, Satheesh N, Kherawat BS, Kumar A, Kim HU, et al. 2023. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules—current perspectives and future directions. Plants 12:864 doi: 10.3390/plants12040864
CrossRef Google Scholar
|
[22]
|
Altaf MA, Hao Y, Shu H, Mumtaz MA, Cheng S, et al. 2023. Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. Journal of Hazardous Materials 454:131468 doi: 10.1016/j.jhazmat.2023.131468
CrossRef Google Scholar
|
[23]
|
Zhao B, Liu Q, Wang B, Yuan F. 2021. Roles of phytohormones and their signaling pathways in leaf development and stress responses. Journal of Agricultural and Food Chemistry 69:3566−84 doi: 10.1021/acs.jafc.0c07908
CrossRef Google Scholar
|
[24]
|
Yang L, Yang J, Hou C, Shi P, Zhang Y, et al. 2023. Hydrogen sulfide alleviates salt stress through auxin signaling in Arabidopsis. Environmental and Experimental Botany 211:105354 doi: 10.1016/j.envexpbot.2023.105354
CrossRef Google Scholar
|
[25]
|
Guo T, Chen K, Dong N, Ye W, Shan J, et al. 2020. Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. Journal of Integrative Plant Biology 62:581−600 doi: 10.1111/jipb.12820
CrossRef Google Scholar
|
[26]
|
Cao X, Yang H, Shang C, Ma S, Liu L, et al. 2019. The roles of auxin biosynthesis YUCCA gene family in plants. International Journal of Molecular Sciences 20:6343 doi: 10.3390/ijms20246343
CrossRef Google Scholar
|
[27]
|
Ribba T, Garrido-Vargas F, O'Brien JA. 2020. Auxin-mediated responses under salt stress: from developmental regulation to biotechnological applications. Journal of Experimental Botany 71:3843−53 doi: 10.1093/jxb/eraa241
CrossRef Google Scholar
|
[28]
|
Shi H, Liu W, Wei Y, Ye T. 2017. Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis. Journal of Experimental Botany 68:1239−49 doi: 10.1093/jxb/erw508
CrossRef Google Scholar
|
[29]
|
Kirungu JN, Magwanga RO, Lu P, Cai X, Zhou Z, et al. 2019. Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genetics 20:62 doi: 10.1186/s12863-019-0756-6
CrossRef Google Scholar
|
[30]
|
Guo Y, Jiang Q, Hu Z, Sun X, Fan S, et al. 2018. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. The Crop Journal 6:181−90 doi: 10.1016/j.cj.2017.08.005
CrossRef Google Scholar
|
[31]
|
Lee J, Han CT, Hur Y. 2013. Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1. Molecular Biology Reports 40:197−209 doi: 10.1007/s11033-012-2050-9
CrossRef Google Scholar
|
[32]
|
Yoshida H, Takehara S, Mori M, Ordonio RL, Matsuoka M. 2020. Evolution of GA metabolic enzymes in land plants. Plant and Cell Physiology 61:1919−34 doi: 10.1093/pcp/pcaa126
CrossRef Google Scholar
|
[33]
|
Uçarlı C. 2021. Physiological and molecular effects of exogenous gibberellin (GA3) treatment on germination of barley seeds under salt stress. Adıyaman University Journal of Science 11:227−43 doi: 10.37094/adyujsci.904266
CrossRef Google Scholar
|
[34]
|
Ma H, Liang D, Shuai P, Xia X, Yin W. 2010. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. Journal of Experimental Botany 61:4011−19 doi: 10.1093/jxb/erq217
CrossRef Google Scholar
|
[35]
|
Inomata N, Miyakawa M, Ikeda N, Oda K, Aihara M. 2018. Identification of gibberellin-regulated protein as a new allergen in orange allergy. Clinical & Experimental Allergy 48:1509−1520 doi: 10.1111/cea.13247
CrossRef Google Scholar
|
[36]
|
Muhammad I, Li W, Jing X, Zhou M, Shalmani A, et al. 2019. A systematic in silico prediction of gibberellic acid stimulated GASA family members: a novel small peptide contributes to floral architecture and transcriptomic changes induced by external stimuli in rice. Journal of Plant Physiology 234–235:117−32 doi: 10.1016/j.jplph.2019.02.005
CrossRef Google Scholar
|
[37]
|
Gu N, Zhang X, Gu X, Zhao L, Godana EA, et al. 2021. Transcriptomic and proteomic analysis of the mechanisms involved in enhanced disease resistance of strawberries induced by Rhodotorula mucilaginosa cultured with chitosan. Postharvest Biology and Technology 172:111355 doi: 10.1016/j.postharvbio.2020.111355
CrossRef Google Scholar
|
[38]
|
Wang N, Wang X, Zhang H, Liu X, Shi J, et al. 2021. Early ABA-stimulated maintenance of Cl− homeostasis by mepiquat chloride priming confers salt tolerance in cotton seeds. The Crop Journal 9:387−99 doi: 10.1016/j.cj.2020.08.004
CrossRef Google Scholar
|
[39]
|
Lin Z, Li Y, Wang Y, Liu X, Ma L, et al. 2021. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nature Communications 12:2456 doi: 10.1038/s41467-021-22812-x
CrossRef Google Scholar
|
[40]
|
Ye Y, Jia X, Xue M, Gao Y, Yue H, et al. 2022. MpSnRK2.10 confers salt stress tolerance in apple via the ABA signaling pathway. Scientia Horticulturae 298:110998 doi: 10.1016/j.scienta.2022.110998
CrossRef Google Scholar
|
[41]
|
Akbudak MA, Filiz E, Kontbay K. 2018. DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech 8:426 doi: 10.1007/s13205-018-1454-1
CrossRef Google Scholar
|
[42]
|
Yang Y, Yin J, Huang L, Li J, Chen D, et al. 2019. Salt enhances disease resistance and suppresses cell death in ceramide kinase mutants. Plant Physiology 181:319−31 doi: 10.1104/pp.19.00613
CrossRef Google Scholar
|
[43]
|
Noctor G, Mhamdi A, Foyer CH. 2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology 164:1636−48 doi: 10.1104/pp.113.233478
CrossRef Google Scholar
|
[44]
|
Arnao MB, Hernández-Ruiz J. 2019. Melatonin: a new plant hormone and/or a plant master regulator? Trends in Plant Science 24:38−48 doi: 10.1016/j.tplants.2018.10.010
CrossRef Google Scholar
|
[45]
|
Gao W, Feng Z, Bai Q, He J, Wang Y. 2019. Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. International Journal of Molecular Sciences 20:1176 doi: 10.3390/ijms20051176
CrossRef Google Scholar
|
[46]
|
Du Q, Campbell M, Yu H, Liu K, Walia H, et al. 2019. Network-based feature selection reveals substructures of gene modules responding to salt stress in rice. Plant Direct 3:e00154 doi: 10.1002/pld3.154
CrossRef Google Scholar
|
[47]
|
Saddhe AA, Manuka R, Penna S. 2021. Plant sugars: homeostasis and transport under abiotic stress in plants. Physiologia Plantarum 171:739−55 doi: 10.1111/ppl.13283
CrossRef Google Scholar
|
[48]
|
Li Q, Yu H, Meng X, Lin J, Li Y, et al. 2018. Ectopic expression of glycosyltransferase UGT76E11 increases flavonoid accumulation and enhances abiotic stress tolerance in Arabidopsis. Plant Biology 20:10−19 doi: 10.1111/plb.12627
CrossRef Google Scholar
|
[49]
|
Chan Z, Grumet R, Loescher W. 2011. Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. Journal of Experimental Botany 171:4787−803 doi: 10.1093/jxb/err130
CrossRef Google Scholar
|
[50]
|
Mathan J, Singh A, Ranjan A. 2021. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiologia Plantarum 171:620−37 doi: 10.1111/ppl.13210
CrossRef Google Scholar
|
[51]
|
Sarkar AK, Sadhukhan S. 2022. Imperative role of trehalose metabolism and trehalose-6-phosphate signaling on salt stress responses in plants. Physiologia Plantarum 174:e13647 doi: 10.1111/ppl.13647
CrossRef Google Scholar
|
[52]
|
Cruz TMD, Carvalho RF, Richardson DN, Duque P. 2014. Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression. International Journal of Molecular Siences 15:17541−64 doi: 10.3390/ijms151017541
CrossRef Google Scholar
|
[53]
|
Zhang S, Li X, Fan S, Zhou L, Wang Y. 2020. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry 151:243−54 doi: 10.1016/j.plaphy.2020.03.020
CrossRef Google Scholar
|
[54]
|
Lei X, Fang J, Lv J, Li Z, Liu Z, et al. 2023. Overexpression of ThSCL32 confers salt stress tolerance by enhancing ThPHD3 gene expression in Tamarix hispida. Tree Physiology 43:1444−53 doi: 10.1093/treephys/tpad057
CrossRef Google Scholar
|
[55]
|
Okumura T, Nomoto Y, Kobayashi K, Suzuki T, Takatsuka H, et al. 2021. MYB3R-mediated active repression of cell cycle and growth under salt stress in Arabidopsis thaliana. Journal of Plant Research 134:261−77 doi: 10.1007/s10265-020-01250-8
CrossRef Google Scholar
|