[1]
|
Fu M, Blackshear PJ. 2017. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nature Reviews Immunology 17:130−43 doi: 10.1038/nri.2016.129
CrossRef Google Scholar
|
[2]
|
Wells ML, Perera L, Blackshear PJ. 2017. An ancient family of RNA-binding proteins: still important! Trends in Biochemical Sciences 42:285−96 doi: 10.1016/j.tibs.2016.12.003
CrossRef Google Scholar
|
[3]
|
Halees AS, El-Badrawi R, Khabar KSA. 2008. ARED organism: expansion of ARED reveals AU-rich element cluster variations between human and mouse. Nucleic Acids Research 36:D137−D140 doi: 10.1093/nar/gkm959
CrossRef Google Scholar
|
[4]
|
Rodríguez-Gómez G, Paredes-Villa A, Cervantes-Badillo MG, Gómez-Sonora JP, Jorge-Pérez JH, et al. 2021. Tristetraprolin: a cytosolic regulator of mRNA turnover moonlighting as transcriptional corepressor of gene expression. Molecular Genetics and Metabolism 133:137−47 doi: 10.1016/j.ymgme.2021.03.015
CrossRef Google Scholar
|
[5]
|
Han G, Qiao Z, Li Y, Wang C, Wang B. 2021. The roles of CCCH zinc-finger proteins in plant abiotic stress tolerance. International Journal of Molecular Science 22:8327 doi: 10.3390/ijms22158327
CrossRef Google Scholar
|
[6]
|
Wang Q, Song S, Lu X, Wang Y, Chen Y, et al. 2022. Hormone regulation of CCCH zinc finger proteins in plants. International Journal of Molecular Science 23:14288 doi: 10.3390/ijms232214288
CrossRef Google Scholar
|
[7]
|
Chai G, Hu R, Zhang D, Qi G, Zuo R, et al. 2012. Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa). BMC Genomics 13:253 doi: 10.1186/1471-2164-13-253
CrossRef Google Scholar
|
[8]
|
Kim WC, Kim JY, Ko JH, Kang H, Kim J, et al. 2014. AtC3H14, a plant-specific tandem CCCH zinc-finger protein, binds to its target mRNAs in a sequence-specific manner and affects cell elongation in Arabidopsis thaliana. The Plant Journal 80:772−84 doi: 10.1111/tpj.12667
CrossRef Google Scholar
|
[9]
|
Lu P, Chai M, Yang J, Ning G, Wang G, et al. 2014. The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis. Plant Physiology 164:1893−904 doi: 10.1104/pp.113.233387
CrossRef Google Scholar
|
[10]
|
Chai G, Kong Y, Zhu M, Yu L, Qi G, et al. 2015. Arabidopsis C3H14 and C3H15 have overlapping roles in the regulation of secondary wall thickening and anther development. Journal of Experimental Botany 66:2595−609 doi: 10.1093/jxb/erv060
CrossRef Google Scholar
|
[11]
|
Chai G, Qi G, Wang D, Zhuang Y, Xu H, et al. 2022. The CCCH zinc finger protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid signaling. Plant Physiology 189:285−300 doi: 10.1093/plphys/kiac046
CrossRef Google Scholar
|
[12]
|
Wang D, Xu H, Huang J, Kong Y, AbuQamar S, et al. 2020. The Arabidopsis CCCH protein C3H14 contributes to basal defense against Botrytis cinerea mainly through the WRKY33-dependent pathway. Plant, Cell & Environment 43:1792−806 doi: 10.1111/pce.13771
CrossRef Google Scholar
|
[13]
|
Wang D, Chai G, Xu L, Yang K, Zhuang Y, et al. 2022. Phosphorylation-mediated inactivation of C3H14 by MPK4 enhances bacterial-triggered immunity in Arabidopsis. Plant Physiology 190:1941−59 doi: 10.1093/plphys/kiac300
CrossRef Google Scholar
|
[14]
|
Chai G, Qi G, Cao Y, Wang Z, Yu L, et al. 2014. Poplar PdC3H17 and PdC3H18 are direct targets of PdMYB3 and PdMYB21, and positively regulate secondary wall formation in Arabidopsis and poplar. New Phytologist 203:520−34 doi: 10.1111/nph.12825
CrossRef Google Scholar
|
[15]
|
Tang X, Wang D, Liu Y, Lu M, Zhuang Y, et al. 2020. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus. New Phytologist 225:1545−61 doi: 10.1111/nph.16244
CrossRef Google Scholar
|
[16]
|
He H, Song X, Jiang C, Liu Y, Wang D, et al. 2022. The role of senescence-associated gene101 (PagSAG101a) in the regulation of secondary xylem formation in poplar. Journal of Integrative Plant Biology 64:73−86 doi: 10.1111/jipb.13195
CrossRef Google Scholar
|
[17]
|
Zhuang Y, Wang C, Zhang Y, Chen S, Wang D, et al. 2019. Overexpression of PdC3H17 confers tolerance to drought stress depending on its CCCH domain in Populus. Frontiers in Plant Science 10:1748 doi: 10.3389/fpls.2019.01748
CrossRef Google Scholar
|
[18]
|
Zhong R, McCarthy RL, Haghighat M, Ye ZH. 2013. The poplar MYB master swithces bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS ONE 8:e69219 doi: 10.1371/journal.pone.0069219
CrossRef Google Scholar
|
[19]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[20]
|
He F, Wang H, Li H, Su Y, Li S, et al. 2018. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnology Journal 16:1514−28 doi: 10.1111/pbi.12893
CrossRef Google Scholar
|
[21]
|
Li S, Lin YCJ, Wang P, Zhang B, Li M, et al. 2019. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. The Plant Cell 31:663−86 doi: 10.1105/tpc.18.00437
CrossRef Google Scholar
|
[22]
|
Chen Z, Li S, Wan X, Liu S. 2022. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Frontiers in Plant Science 13:926535 doi: 10.3389/fpls.2022.926535
CrossRef Google Scholar
|
[23]
|
Giovannelli A, Deslauriers A, Fragnelli G, Scaletti L, Castro G, et al. 2007. Evaluation of drought response of two poplar clones (Populus × canadensis Mönch 'I-214' and P. deltoides Marsh. 'Dvina') through high resolution analysis of stem growth. Journal of Experimental Botany 58:2673−83 doi: 10.1093/jxb/erm117
CrossRef Google Scholar
|
[24]
|
Rowland L, Ramírez-Valiente JA, Hartley IP, Mencuccini M. 2023. How woody plants adjust above- and below-ground traits in response to sustained drought. New Phytologist 239:1173−89 doi: 10.1111/nph.19000
CrossRef Google Scholar
|
[25]
|
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33:453−67 doi: 10.1111/j.1365-3040.2009.02041.x
CrossRef Google Scholar
|
[26]
|
Henri P, Rumeau D. 2021. Ectopic expression of human apolipoprotein D in Arabidopsis plants lacking chloroplastic lipocalin partially rescues sensitivity to drought and oxidative stress. Plant Physiology and Biochemistry 158:265−74 doi: 10.1016/j.plaphy.2020.11.009
CrossRef Google Scholar
|
[27]
|
Yu Q, Liu S, Yu L, Xiao Y, Zhang S, et al. 2021. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nature Biotechnology 39:1581−88 doi: 10.1038/s41587-021-00982-9
CrossRef Google Scholar
|
[28]
|
Liang B, Wei Z, Ma C, Yin B, Li C, et al. 2023. Ectopic expression of HIOMT improves tolerance and nitrogen utilization efficiency in transgenic apple under drought stress. Tree Physiology 43:335−50 doi: 10.1093/treephys/tpac112
CrossRef Google Scholar
|
[29]
|
Harfouche A, Meilan R, Altman A. 2014. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology 34:1181−98 doi: 10.1093/treephys/tpu012
CrossRef Google Scholar
|
[30]
|
Mukarram M, Choudhary S, Kurjak D, Petek A, Khan MMA. 2021. Drought: sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum 172:1291−300 doi: 10.1111/ppl.13423
CrossRef Google Scholar
|
[31]
|
Grassi G, Magnani F. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment 28:834−49 doi: 10.1111/j.1365-3040.2005.01333.x
CrossRef Google Scholar
|
[32]
|
Keenan T, Sabate S, Gracia C. 2010. The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods. Global Change Biology 16:1019−34 doi: 10.1111/j.1365-2486.2009.02017.x
CrossRef Google Scholar
|
[33]
|
Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90:856−67 doi: 10.1111/tpj.13299
CrossRef Google Scholar
|
[34]
|
Marzec-Schmidt K, Wojciechowska N, Nemeczek K, Ludwików A, Mucha J, et al. 2020. Allies or enemies: the role of reactive oxygen species in developmental processes of black cottonwood (Populus trichocarpa). Antioxidants 9:199 doi: 10.3390/antiox9030199
CrossRef Google Scholar
|
[35]
|
Michel SLJ, Guerrerio AL, Berg JM. 2003. Selective RNA binding by a single CCCH zinc-binding domain from Nup475 (Tristetraprolin). Biochemistry 42:4626−30 doi: 10.1021/bi034073h
CrossRef Google Scholar
|