[1]
|
Ali F, Qanmber G, Li F, Wang Z. 2022. Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research 35:199−214 doi: 10.1016/j.jare.2021.03.011
CrossRef Google Scholar
|
[2]
|
Nonogaki H, Bassel GW, Bewley JD. 2010. Germination—Still a mystery. Plant Science 179:574−81 doi: 10.1016/j.plantsci.2010.02.010
CrossRef Google Scholar
|
[3]
|
Wang WQ, Ye JQ, Rogowska-Wrzesinska A, Wojdyla KI, Jensen ON, et al. 2014. Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance. Journal of Proteome Research 13:606−26 doi: 10.1021/pr4007574
CrossRef Google Scholar
|
[4]
|
He D, Yang P. 2013. Proteomics of rice seed germination. Frontiers in Plant Science 4:246 doi: 10.3389/fpls.2013.00246
CrossRef Google Scholar
|
[5]
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. 2020. An updated overview on the regulation of seed germination. Plants 9:703 doi: 10.3390/plants9060703
CrossRef Google Scholar
|
[6]
|
Han C, Yang P. 2015. Studies on the molecular mechanisms of seed germination. Proteomics 15:1671−79 doi: 10.1002/pmic.201400375
CrossRef Google Scholar
|
[7]
|
Holdsworth MJ, Bentsink L, Soppe WJJ. 2008. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179:33−54 doi: 10.1111/j.1469-8137.2008.02437.x
CrossRef Google Scholar
|
[8]
|
Liu X, Zhang H, Zhao Y, Feng Z, Li Q, et al. 2013. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of The National Academy of Sciences of The United States of America 110:15485−90 doi: 10.1073/pnas.1304651110
CrossRef Google Scholar
|
[9]
|
Hu Y, Yu D. 2014. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. The Plant Cell 26:4394−408 doi: 10.1105/tpc.114.130849
CrossRef Google Scholar
|
[10]
|
Wang L, Hua D, He J, Duan Y, Chen Z, et al. 2011. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. Plos Genetics 7:e1002172 doi: 10.1371/journal.pgen.1002172
CrossRef Google Scholar
|
[11]
|
Wang Y, Li L, Ye T, Zhao S, Liu Z, et al. 2011. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. The Plant Journal 68:249−61 doi: 10.1111/j.1365-313X.2011.04683.x
CrossRef Google Scholar
|
[12]
|
Jurdak R, Launay-Avon A, Roux CPL, Bailly C. 2020. Retrograde signalling from the mitochondria to the nucleus translates the positive effect of ethylene on dormancy breaking of Arabidopsis thaliana seeds. New Phytologist 229:2192−205 doi: 10.1111/nph.16985
CrossRef Google Scholar
|
[13]
|
Pan J, Hu Y, Wang H, Guo Q, Chen Y, et al. 2020. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis. The Plant Cell 32:3846−65 doi: 10.1105/tpc.19.00838
CrossRef Google Scholar
|
[14]
|
Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, et al. 2002. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology 20:261−68 doi: 10.1016/s0167-7799(02)01944-3
CrossRef Google Scholar
|
[15]
|
Bennett EJ, Rush J, Gygi SP, Harper JW. 2010. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143:951−65 doi: 10.1016/j.cell.2010.11.017
CrossRef Google Scholar
|
[16]
|
Yu F, Li M, He D, Yang P. 2021. Advances on post-translational modifications involved in seed germination. Frontiers in Plant Science 12:642979 doi: 10.3389/fpls.2021.642979
CrossRef Google Scholar
|
[17]
|
Coego A, Julian J, Lozano-Juste J, Pizzio GA, Alrefaei AF, et al. 2021. Ubiquitylation of ABA receptors and protein phosphatase 2C coreceptors to modulate ABA signaling and stress response. International Journal of Molecular Sciences 22:7103 doi: 10.3390/ijms22137103
CrossRef Google Scholar
|
[18]
|
Springthorpe V, Penfield S. 2015. Flowering time and seed dormancy control use external coincidence to generate life history strategy. Elife 4:e05557 doi: 10.7554/elife.05557
CrossRef Google Scholar
|
[19]
|
Seo M, Nambara E, Choi G, Yamaguchi S. 2009. Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology 69:463−72 doi: 10.1007/s11103-008-9429-y
CrossRef Google Scholar
|
[20]
|
Jiang A, Guo Z, Pan J, Yang Y, Zhuang Y, et al. 2021. The PIF1-miR408-PLANTACYANIN repression cascade regulates light-dependent seed germination. The Plant Cell 33:1506−29 doi: 10.1093/plcell/koab060
CrossRef Google Scholar
|
[21]
|
Yang L, Liu S, Lin R. 2020. The role of light in regulating seed dormancy and germination. Journal of Integrative Plant Biology 62:1310−26 doi: 10.1111/jipb.13001
CrossRef Google Scholar
|
[22]
|
Yang L, Jiang Z, Jing Y, Lin R. 2020. PIF1 and RVE1 form a transcriptional feedback loop to control light-mediated seed germination in Arabidopsis. Journal of Integrative Plant Biology 62:1372−84 doi: 10.1111/jipb.12938
CrossRef Google Scholar
|
[23]
|
Penfield, Steven. 2017. Seed dormancy and germination. Current Biology 27:R874−R878 doi: 10.1016/j.cub.2017.05.050
CrossRef Google Scholar
|
[24]
|
Rehmani MS, Aziz U, Xian B, Shu K. 2022. Seed dormancy and longevity: a mutual dependence or a trade-off? Plant and Cell Physiology 63:1029−37 doi: 10.1093/pcp/pcac069
CrossRef Google Scholar
|
[25]
|
Sato H, Köhler C. 2022. Genomic imprinting regulates establishment and release of seed dormancy. Current Opinion in Plant Biology 69:102264 doi: 10.1016/j.pbi.2022.102264
CrossRef Google Scholar
|
[26]
|
Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ. 2012. Molecular mechanisms of seed dormancy. Plant Cell and Environment 35:1769−86 doi: 10.1111/j.1365-3040.2012.02542.x
CrossRef Google Scholar
|
[27]
|
Gong D, He F, Liu J, Zhang C, Wang Y, et al. 2022. Understanding of Hormonal Regulation in Rice Seed Germination. Life 12(7):1021 doi: 10.3390/life12071021
CrossRef Google Scholar
|
[28]
|
Bove J, Jullien M, Grappin P. 2002. Functional genomics in the study of seed germination. Genome Biology 3:REVIEWS1002.1 doi: 10.1186/gb-2001-3-1-reviews1002
CrossRef Google Scholar
|
[29]
|
Weitbrecht K, Müller K, Leubner-Metzger G. 2011. First off the mark: early seed germination. Journal of Experimental Botany 62:3289−309 doi: 10.1093/jxb/err030
CrossRef Google Scholar
|
[30]
|
Oracz K, Stawska M. 2016. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination. Frontiers in Plant Science 7:1128 doi: 10.3389/fpls.2016.01128
CrossRef Google Scholar
|
[31]
|
Srivastava AK, Suresh Kumar J, Suprasanna P. 2021. Seed 'primeomics': plants memorize their germination under stress. Biological Reviews of the Cambridge Philosophical Society 96:1723−43 doi: 10.1111/brv.12722
CrossRef Google Scholar
|
[32]
|
Gimeno-Gilles C, Lelièvre E, Viau L, Malik-Ghulam M, Ricoult C, et al. 2009. ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture: modifying enzymes and structural proteins in Medicago truncatula embryo axis. Molecular Plant 2:108−19 doi: 10.1093/mp/ssn092
CrossRef Google Scholar
|
[33]
|
Shu K, Liu XD, Xie Q, He ZH. 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9:34−45 doi: 10.1016/j.molp.2015.08.010
CrossRef Google Scholar
|
[34]
|
Yang D, Zhao F, Zhu D, Chen X, Kong X, et al. 2022. Progressive chromatin silencing of ABA biosynthesis genes permits seed germination in Arabidopsis. The Plant Cell 34:2871−91 doi: 10.1093/plcell/koac134
CrossRef Google Scholar
|
[35]
|
Xu F, Tang J, Wang S, Cheng X, Wang H, et al. 2022. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nature genetics 54:1972−82 doi: 10.1038/s41588-022-01240-7
CrossRef Google Scholar
|
[36]
|
Wang G, Li X, Ye N, Huang M, Feng L, et al. 2021. OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. New Phytologist 230:1925−39 doi: 10.1111/nph.17300
CrossRef Google Scholar
|
[37]
|
Song J, Shang L, Wang X, Xing Y, Xu W, et al. 2021. MAPK11 regulates seed germination and ABA signaling in tomato by phosphorylating SnRKs. Journal of Experimental Botany 72:1677−90 doi: 10.1093/jxb/eraa564
CrossRef Google Scholar
|
[38]
|
Pan J, Wang H, Hu Y, Yu D. 2018. Arabidopsis VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination. The Plant Journal 95:529−44 doi: 10.1111/tpj.13969
CrossRef Google Scholar
|
[39]
|
Zhao B, Wang L, Shao Z, Chin K, Chakravarty D, et al. 2021. ENAP1 retrains seed germination via H3K9 acetylation mediated positive feedback regulation of ABI5. Plos Genetics 17:e1009955 doi: 10.1371/journal.pgen.1009955
CrossRef Google Scholar
|
[40]
|
Hu Y, Han X, Yang M, Zhang M, Pan J, et al. 2019. The Transcription Factor INDUCER OF CBF EXPRESSION1 Interacts with ABSCISIC ACID INSENSITIVE5 and DELLA proteins to fine-tune abscisic acid signaling during seed germination in Arabidopsis. The Plant Cell 31:1520−38 doi: 10.1105/tpc.18.00825
CrossRef Google Scholar
|
[41]
|
Yang M, Han X, Yang J, Jiang Y, Hu Y. 2021. The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination. The Plant Cell 33:3022−41 doi: 10.1093/plcell/koab168
CrossRef Google Scholar
|
[42]
|
Guo JX, Song RF, Lu KK, Zhang Y, Chen HH, et al. 2022. CycC1;1 negatively modulates ABA signaling by interacting with and inhibiting ABI5 during seed germination. Plant Physiology 190:2812−27 doi: 10.1093/plphys/kiac456
CrossRef Google Scholar
|
[43]
|
Sun TP, Gubler F. 2004. Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology 55:197−223 doi: 10.1146/annurev.arplant.55.031903.141753
CrossRef Google Scholar
|
[44]
|
Bao S, Hua C, Shen L, Yu H. 2020. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology 62:118−31 doi: 10.1111/jipb.12892
CrossRef Google Scholar
|
[45]
|
Murase K, HiranoY, Sun TP, Hakoshima T. 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459−63 doi: 10.1038/nature07519
CrossRef Google Scholar
|
[46]
|
Ariizumi T, Steber CM. 2007. Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis. The Plant Cell 19:791−804 doi: 10.1105/tpc.106.048009
CrossRef Google Scholar
|
[47]
|
Wen CK, Chang C. 2002. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. The Plant Cell 14:87−100 doi: 10.1105/tpc.010325
CrossRef Google Scholar
|
[48]
|
Lee BD, Yim Y, Cañibano E, Kim SH, García-León M, et al. 2022. CONSTITUTIVE PHOTOMORPHOGENIC 1 promotes seed germination by destabilizing RGA-LIKE 2 in Arabidopsis. Plant Physiology 189:1662−76 doi: 10.1093/plphys/kiac060
CrossRef Google Scholar
|
[49]
|
Lee S, Cheng H, King KE, Wang W, He Y, et al. 2002. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes & Development 16:646−58 doi: 10.1101/gad.969002
CrossRef Google Scholar
|
[50]
|
Cao D, Hussain A, Cheng H, Peng J. 2005. Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223:105−13 doi: 10.1007/s00425-005-0057-3
CrossRef Google Scholar
|
[51]
|
Stamm P, Ravindran P, Mohanty B, Tan EL, Yu H, et al. 2012. Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana. BMC Plant Biology 12:179 doi: 10.1186/1471-2229-12-179
CrossRef Google Scholar
|
[52]
|
Ponnu J, Hoecker U. 2021. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. Frontiers in Plant Science 12:662793 doi: 10.3389/fpls.2021.662793
CrossRef Google Scholar
|
[53]
|
Xu P, Hu J, Chen H, Cai W. 2023. SMAX1 interacts with DELLA protein to inhibit seed germination under weak light conditions via gibberellin biosynthesis in Arabidopsis. Cell Reports 42:112740 doi: 10.1016/j.celrep.2023.112740
CrossRef Google Scholar
|
[54]
|
Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, et al. 2001. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. The Plant Cell 13:999−1010 doi: 10.1105/tpc.13.5.999
CrossRef Google Scholar
|
[55]
|
Li M, Zhang H, He D, Damaris RN, Yang P. 2022. A stress-associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on OsKO2. Journal of Experimental Botany 73:2420−33 doi: 10.1093/jxb/erac027
CrossRef Google Scholar
|
[56]
|
Guo X, Hou X, Fang J, Wei P, Xu B, et al. 2013. The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. The Plant Journal 75:403−16 doi: 10.1111/tpj.12209
CrossRef Google Scholar
|
[57]
|
Tong H, Chu C. 2018. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends in Plant Science 23:1016−28 doi: 10.1016/j.tplants.2018.08.007
CrossRef Google Scholar
|
[58]
|
Matilla AJ, Matilla-Vázquez MA. 2008. Involvement of ethylene in seed physiology. Plant Science 175:87−97 doi: 10.1016/j.plantsci.2008.01.014
CrossRef Google Scholar
|
[59]
|
Xiong M, Yu J, Wang J, Gao Q, Huang L, et al. 2022. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. Plant Physiology 189:402−18 doi: 10.1093/plphys/kiac043
CrossRef Google Scholar
|
[60]
|
El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, et al. 2015. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell and Environment 38:364−74 doi: 10.1111/pce.12371
CrossRef Google Scholar
|
[61]
|
Fu JR, Yang SF. 1983. Release of heat pretreatment-induced dormancy in lettuce seeds by ethylene or cytokinin in relation to the production of ethylene and the synthesis of 1-aminocyclopropane-1-carboxylic acid during germination. Journal of Plant Growth Regulation 2:185−92 doi: 10.1007/BF02042247
CrossRef Google Scholar
|
[62]
|
Chen Y, Althiab Almasaud R, Carrie E, Desbrosses G, Binder BM, et al. 2020. Ethanol, at physiological concentrations, affects ethylene sensing in tomato germinating seeds and seedlings. Plant Science 291:110368 doi: 10.1016/j.plantsci.2019.110368
CrossRef Google Scholar
|
[63]
|
Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H. 2014. Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science 5:539 doi: 10.3389/fpls.2014.00539
CrossRef Google Scholar
|
[64]
|
Subbiah V, Reddy KJ. 2010. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. Journal of Biosciences 35:451−58 doi: 10.1007/s12038-010-0050-2
CrossRef Google Scholar
|
[65]
|
Van de Poel B, Van Der Straeten D. 2014. 1-Aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Frontiers in Plant Science 5:640 doi: 10.3389/fpls.2014.00640
CrossRef Google Scholar
|
[66]
|
Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A. 2013. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Frontiers in Plant Science 4:63 doi: 10.3389/fpls.2013.00063
CrossRef Google Scholar
|
[67]
|
Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ. 2008. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiology 148:926−47 doi: 10.1104/pp.108.125807
CrossRef Google Scholar
|
[68]
|
Li X, Chen T, Li Y, Wang Z, Cao H, et al. 2019. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION1 expression. The Plant Cell 31:832−47 doi: 10.1105/tpc.18.00449
CrossRef Google Scholar
|
[69]
|
Dave A, Hernández ML, He Z, Andriotis VME, Vaistij FE, et al. 2011. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. The Plant Cell 23:583−99 doi: 10.1105/tpc.110.081489
CrossRef Google Scholar
|
[70]
|
Liu Z, Zhang S, Sun N, Liu H, Zhao Y, et al. 2015. Functional diversity of jasmonates in rice. Rice 8:5 doi: 10.1186/s12284-015-0042-9
CrossRef Google Scholar
|
[71]
|
Pan J, Wang H, You Q, Cao R, Sun G, et al. 2023. Jasmonate-regulated seed germination and crosstalk with other phytohormones. Journal of Experimental Botany 74:1162−75 doi: 10.1093/jxb/erac440
CrossRef Google Scholar
|
[72]
|
Wang Z, Chen F, Li X, Cao H, Ding M, et al. 2016. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nature Communications 7:13412 doi: 10.1038/ncomms13412
CrossRef Google Scholar
|
[73]
|
Brady SM, Sarkar SF, Bonetta D, McCourt P. 2003. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. The Plant Journal 34:67−75 doi: 10.1046/j.1365-313x.2003.01707.x
CrossRef Google Scholar
|
[74]
|
Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, et al. 2007. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. The Plant Journal 52:133−46 doi: 10.1111/j.1365-313X.2007.03218.x
CrossRef Google Scholar
|
[75]
|
He J, Duan Y, Hua D, Fan G, Wang L, et al. 2012. DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. The Plant Cell 24:1815−33 doi: 10.1105/tpc.112.098707
CrossRef Google Scholar
|
[76]
|
Mei S, Zhang M, Ye J, Du J, Jiang Y, et al. 2023. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. The Plant Cell 35:1110−33 doi: 10.1093/plcell/koac362
CrossRef Google Scholar
|
[77]
|
Xu Q, Truong TT, Barrero JM, Jacobsen JV, Hocart CH, et al. 2016. A role for jasmonates in the release of dormancy by cold stratification in wheat. Journal of Experimental Botany 67:3497−508 doi: 10.1093/jxb/erw172
CrossRef Google Scholar
|
[78]
|
Yang B, Chen M, Zhan C, Liu K, Cheng Y, et al. 2022. Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study. Journal Of Experimental Botany 73:3446−61 doi: 10.1093/jxb/erac071
CrossRef Google Scholar
|
[79]
|
Xi W, Liu C, Hou X, Yu H. 2010. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. The Plant Cell 22:1733−48 doi: 10.1105/tpc.109.073072
CrossRef Google Scholar
|
[80]
|
Zhao X, Dou L, Gong Z, Wang X, Mao T. 2019. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. New Phytologist 221:908−18 doi: 10.1111/nph.15437
CrossRef Google Scholar
|
[81]
|
Linkies A, Müller K, Morris K, Turečková V, Wenk M, et al. 2009. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: A comparative approach using lepidium sativum and Arabidopsis thaliana. The Plant Cell 21:3803−22 doi: 10.1105/tpc.109.070201
CrossRef Google Scholar
|
[82]
|
Dong Z, Yu Y, Li S, Wang J, Tang S, et al. 2016. Abscisic acid antagonizes ethylene production through the ABI4-Mediated transcriptional repression of ACS4 and ACS8 in Arabidopsis. Molecular Plant 9:126−35 doi: 10.1016/j.molp.2015.09.007
CrossRef Google Scholar
|
[83]
|
He D, Li M, Damaris RN, Bu C, Xue J, et al. 2020. Quantitative ubiquitylomics approach for characterizing the dynamic change and extensive modulation of ubiquitylation in rice seed germination. The Plant Journal 101:1430−47 doi: 10.1111/tpj.14593
CrossRef Google Scholar
|
[84]
|
Thole JM, Beisner ER, Liu J, Venkova SV, Strader LC. 2014. Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana. G3: Genes| Genomes| Genetics 4:1259−74 doi: 10.1534/g3.114.011080
CrossRef Google Scholar
|
[85]
|
Xiong M, Chu L, Li Q, Yu J, Yang Y, et al. 2021. Brassinosteroid and gibberellin coordinate rice seed germination and embryo growth by regulating glutelin mobilization. The Crop Journal 9:1039−48 doi: 10.1016/j.cj.2020.11.006
CrossRef Google Scholar
|
[86]
|
Li QF, Zhou Y, Xiong M, Ren XY, Han L, et al. 2020. Gibberellin recovers seed germination in rice with impaired brassinosteroid signalling. Plant Science 293:110435 doi: 10.1016/j.plantsci.2020.110435
CrossRef Google Scholar
|
[87]
|
Zhong C, Patra B, Tang Y, Li X, Yuan L, et al. 2021. A transcriptional hub integrating gibberellin-brassinosteroid signals to promote seed germination in Arabidopsis. Journal Of Experimental Botany 72:4708−20 doi: 10.1093/jxb/erab192
CrossRef Google Scholar
|
[88]
|
Shuai H, Meng Y, Luo X, Chen F, Zhou W, et al. 2017. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Scientific Reports 7:12620 doi: 10.1038/s41598-017-13093-w
CrossRef Google Scholar
|
[89]
|
Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, et al. 2003. Gibberellin biosynthesis and response during Arabidopsis seed germination. The Plant Cell 15:1591−604 doi: 10.1105/tpc.011650
CrossRef Google Scholar
|
[90]
|
Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annual Review of Plant Biology 69:209−36 doi: 10.1146/annurev-arplant-042817-040322
CrossRef Google Scholar
|
[91]
|
Nathan C, Ding A. 2010. SnapShot: reactive oxygen intermediates (ROI). Cell 140:951 doi: 10.1016/j.cell.2010.03.008
CrossRef Google Scholar
|
[92]
|
Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, et al. 2011. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant Cell and Environment 34:980−93 doi: 10.1111/j.1365-3040.2011.02298.x
CrossRef Google Scholar
|
[93]
|
Farooq MA, Zhang X, Zafar MM, Ma W, Zhao J. 2021. Roles of reactive oxygen species and mitochondria in seed germination. Frontiers in Plant Science 12:781734 doi: 10.3389/fpls.2021.781734
CrossRef Google Scholar
|
[94]
|
Yang X, Zhang F, Yang M, He Y, Li Z, et al. 2020. The NADPH-oxidase LsRbohC1 plays a role in lettuce (Lactuca sativa) seed germination. Plant Physiology and Biochemistry 154:751−57 doi: 10.1016/j.plaphy.2020.05.042
CrossRef Google Scholar
|
[95]
|
Schopfer P. 2001. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. The Plant Journal 28:679−88 doi: 10.1046/j.1365-313x.2001.01187.x
CrossRef Google Scholar
|
[96]
|
Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV. 2010. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. Journal of Plant Physiology 167:805−11 doi: 10.1016/j.jplph.2010.01.019
CrossRef Google Scholar
|
[97]
|
Li WY, Chen BX, Chen ZJ, Gao YT, Chen Z, et al. 2017. Reactive oxygen Species generated by NADPH oxidases promote radicle protrusion and root elongation during Rice seed germination. International Journal of Molecular Sciences 18:110 doi: 10.3390/ijms18010110
CrossRef Google Scholar
|
[98]
|
Chen D, Li Y, Fang T, Shi X, Chen X. 2016. Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice. Plant Science 244:31−39 doi: 10.1016/j.plantsci.2015.12.005
CrossRef Google Scholar
|
[99]
|
Lv Y, Shao G, Jiao G, Sheng Z, Xie L, et al. 2021. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Molecular Plant 14:344−51 doi: 10.1016/j.molp.2020.11.007
CrossRef Google Scholar
|
[100]
|
Ma W, Guan X, Li J, Pan R, Wang L, et al. 2019. Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proceedings of the National Academy of Sciences of the United States of America 116:4716−21 doi: 10.1073/pnas.1815790116
CrossRef Google Scholar
|
[101]
|
Bailly C, El-Maarouf-Bouteau H, Corbineau F. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331:806−14 doi: 10.1016/j.crvi.2008.07.022
CrossRef Google Scholar
|
[102]
|
Ishibashi Y, Koda Y, Zheng SH, Yuasa T, Iwaya-Inoue M. 2013. Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Annals of Botany 111:95−102 doi: 10.1093/aob/mcs240
CrossRef Google Scholar
|
[103]
|
Barba-Espin G, Nicolas E, Almansa MS, Cantero-Navarro E, Albacete A, et al. 2012. Role of thioproline on seed germination: Interaction ROS-ABA and effects on antioxidative metabolism. Plant Physiology and Biochemistry 59:30−36 doi: 10.1016/j.plaphy.2011.12.002
CrossRef Google Scholar
|
[104]
|
Cembrowska-Lech D, Koprowski M, Kępczyński J. 2015. Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2·−) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. Journal of Plant Physiology 176:169−79 doi: 10.1016/j.jplph.2014.11.010
CrossRef Google Scholar
|
[105]
|
Chen BX, Peng YX, Yang XQ, Liu J. 2021. Delayed germination of Brassica parachinensis seeds by coumarin involves decreased GA4 production and a consequent reduction of ROS accumulation. Seed Science Research 31(3):224−35 doi: 10.1017/s0960258521000167
CrossRef Google Scholar
|
[106]
|
Kai K, Kasa S, Sakamoto M, Aoki N, Watabe G, et al. 2016. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. Plant Signaling & Behavior 11:e1180492 doi: 10.1080/15592324.2016.1180492
CrossRef Google Scholar
|
[107]
|
Liu H, Stone SL. 2010. Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. The Plant Cell 22:2630−41 doi: 10.1105/tpc.110.076075
CrossRef Google Scholar
|
[108]
|
Anand A, Kumari A, Thakur M, Koul A. 2019. Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific Reports 9:8814 doi: 10.1038/s41598-019-45102-5
CrossRef Google Scholar
|
[109]
|
Ishibashi Y, Aoki N, Kasa S, Sakamoto M, Kai K, et al. 2017. The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Frontiers in Plant Science 8:275 doi: 10.3389/fpls.2017.00275
CrossRef Google Scholar
|
[110]
|
Meinhard M, Grill E. 2001. Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Letters 508:443−46 doi: 10.1016/S0014-5793(01)03106-4
CrossRef Google Scholar
|
[111]
|
Meinhard M, Rodriguez PL, Grill E. 2002. The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214:775−82 doi: 10.1007/s00425-001-0675-3
CrossRef Google Scholar
|
[112]
|
Luo X, Dai Y, Zheng C, Yang Y, Chen W, et al. 2021. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytologist 229:950−62 doi: 10.1111/nph.16921
CrossRef Google Scholar
|
[113]
|
Bi C, Ma Y, Wu Z, Yu YT, Liang S, et al. 2017. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination. Plant Molecular Biology 94:197−213 doi: 10.1007/s11103-017-0603-y
CrossRef Google Scholar
|
[114]
|
Castel SE, Martienssen RA. 2013. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics 14:100−12 doi: 10.1038/nrg3355
CrossRef Google Scholar
|
[115]
|
Li J, Reichel M, Li Y, Millar AA. 2014. The functional scope of plant microRNA-mediated silencing. Trends in Plant Science 19:750−56 doi: 10.1016/j.tplants.2014.08.006
CrossRef Google Scholar
|
[116]
|
Rogers K, Chen X. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell 25:2383−99 doi: 10.1105/tpc.113.113159
CrossRef Google Scholar
|
[117]
|
Millar AA, Lohe A, Wong G. 2019. Biology and Function of miR159 in Plants. Plants 8:255 doi: 10.3390/plants8080255
CrossRef Google Scholar
|
[118]
|
Guo G, Liu X, Sun F, Cao J, Huo N, et al. 2018. Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. The Plant Cell 30:796−814 doi: 10.1105/tpc.17.00842
CrossRef Google Scholar
|
[119]
|
Guo F, Han N, Xie Y, Fang K, Yang Y, et al. 2016. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.). Plant Cell and Environment 39:2288−302 doi: 10.1111/pce.12781
CrossRef Google Scholar
|
[120]
|
Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H. 2010. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant and Cell Physiology 51:1079−83 doi: 10.1093/pcp/pcq072
CrossRef Google Scholar
|
[121]
|
Batista RA, Köhler C. 2020. Genomic imprinting in plants-revisiting existing models. Genes and Development 34:24−36 doi: 10.1101/gad.332924.119
CrossRef Google Scholar
|
[122]
|
Rodrigues JA, Zilberman D. 2015. Evolution and function of genomic imprinting in plants. Genes and Development 29:2517−31 doi: 10.1101/gad.269902.115
CrossRef Google Scholar
|
[123]
|
Jiang H, Köhler C. 2012. Evolution, function, and regulation of genomic imprinting in plant seed development. Journal of Experimental Botany 63:4713−22 doi: 10.1093/jxb/ers145
CrossRef Google Scholar
|
[124]
|
Sato H, Santos-González J, Köhler C. 2021. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. Elife 10:e64593 doi: 10.7554/eLife.64593
CrossRef Google Scholar
|
[125]
|
Liu C, Lu F, Cui X, Cao X. 2010. Histone Methylation in Higher Plants. Annual Review of Plant Biology 61:395−420 doi: 10.1146/annurev.arplant.043008.091939
CrossRef Google Scholar
|
[126]
|
Chen H, Tong J, Fu W, Liang Z, Ruan J, et al. 2020. The H3K27me3 Demethylase RELATIVE OF EARLY FLOWERING6 suppresses seed dormancy by inducing abscisic acid catabolism. Plant Physiology 184:1969−78 doi: 10.1104/pp.20.01255
CrossRef Google Scholar
|
[127]
|
Zhu H, Xie W, Xu D, Miki D, Tang K, et al. 2018. DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 115:E9962−E9970 doi: 10.1073/pnas.1812847115
CrossRef Google Scholar
|
[128]
|
Han B, Li Y, Wu D, Li DZ, Liu A, et al. 2023. Dynamics of imprinted genes and their epigenetic mechanisms in castor bean seed with persistent endosperm. New Phytologist 240:1868−82 doi: 10.1111/nph.19265
CrossRef Google Scholar
|
[129]
|
Ahmad Dar F, Mushtaq NU, Saleem S, Rehman RU, Dar TUH, et al. 2022. Role of epigenetics in modulating phenotypic plasticity against abiotic stresses in plants. International Journal of Genomics 2022:1092894 doi: 10.1155/2022/1092894
CrossRef Google Scholar
|
[130]
|
Pan J, Zhang H, Zhan Z, Zhao T, Jiang D. 2023. A REF6-dependent H3K27me3-depleted state facilitates gene activation during germination in Arabidopsis. Journal of Genetics and Genomics 50:178−91 doi: 10.1016/j.jgg.2022.09.001
CrossRef Google Scholar
|
[131]
|
Lee N, Kang H, Lee D, Choi G. 2014. A histone methyltransferase inhibits seed germination by increasing PIF1 mRNA expression in imbibed seeds. The Plant Journal 78:282−93 doi: 10.1111/tpj.12467
CrossRef Google Scholar
|
[132]
|
Li P, Zhang Q, He D, Zhou Y, Ni H, et al. 2020. AGAMOUS-LIKE67 cooperates with the histone mark reader EBS to modulate seed germination under high temperature. Plant Physiology 184:529−45 doi: 10.1104/pp.20.00056
CrossRef Google Scholar
|
[133]
|
Gu D, Chen CY, Zhao M, Zhao L, Duan X, et al. 2017. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Research 45:7137−50 doi: 10.1093/nar/gkx283
CrossRef Google Scholar
|
[134]
|
Wang Y, Fan Y, Fan D, Zhou X, Jiao Y, et al. 2023. The noncoding RNA HIDDEN TREASURE 1 promotes phytochrome B-dependent seed germination by repressing abscisic acid biosynthesis. The Plant Cell 35:700−16 doi: 10.1093/plcell/koac334
CrossRef Google Scholar
|
[135]
|
Han SK, Sang Y, Rodrigues A, BIOL425 F2010, Wu MF, et al. 2012. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. The Plant Cell 24:4892−906 doi: 10.1105/tpc.112.105114
CrossRef Google Scholar
|
[136]
|
Wang TJ, Huang S, Zhang A, Guo P, Liu Y, et al. 2021. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. New Phytologist 230:567−84 doi: 10.1111/nph.17177
CrossRef Google Scholar
|
[137]
|
Gu D, Ji R, He C, Peng T, Zhang M, et al. 2019. Arabidopsis histone methyltransferase SUVH5 is a positive regulator of light-mediated seed germination. Frontiers in Plant Science 10:841 doi: 10.3389/fpls.2019.00841
CrossRef Google Scholar
|
[138]
|
Malabarba J, Windels D, Xu W, Verdier J. 2021. Regulation of DNA (de)Methylation positively impacts seed germination during seed development under heat stress. Genes 12:457 doi: 10.3390/genes12030457
CrossRef Google Scholar
|
[139]
|
Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, et al. 2012. Control of seed germination by light-induced histone arginine demethylation activity. Developmental Cell 22:736−48 doi: 10.1016/j.devcel.2012.01.024
CrossRef Google Scholar
|
[140]
|
Wang YN, Xu T, Wang WP, Zhang QZ, Xie LN. 2021. Role of epigenetic modifications in the development of crops essential traits. Hereditas 43:858−79 doi: 10.16288/j.yczz.21-170
CrossRef Google Scholar
|
[141]
|
Kumar M, Rani K. 2023. Epigenomics in stress tolerance of plants under the climate change. Molecular Biology Reports 50:6201−16 doi: 10.1007/s11033-023-08539-6
CrossRef Google Scholar
|
[142]
|
Baudouin E, Puyaubert J, Meimoun P, Blein-Nicolas M, Davanture M, et al. 2022. Dynamics of protein phosphorylation during Arabidopsis seed germination. International Journal of Molecular Sciences 23:7059 doi: 10.3390/ijms23137059
CrossRef Google Scholar
|
[143]
|
Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, et al. 2014. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal 80:654−68 doi: 10.1111/tpj.12670
CrossRef Google Scholar
|
[144]
|
Liu Y. 2012. Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Reports 31:1−12 doi: 10.1007/s00299-011-1130-y
CrossRef Google Scholar
|
[145]
|
Zhao R, Sun HL, Mei C, Wang XJ, Yan L, et al. 2011. The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytologist 192:61−73 doi: 10.1111/j.1469-8137.2011.03793.x
CrossRef Google Scholar
|
[146]
|
Wu Z, Liang S, Song W, Lin G, Wang W, et al. 2017. Functional and structural characterization of a Receptor-Like kinase Involved in Germination and Cell Expansion in Arabidopsis. Frontiers in Plant Science 8:1999 doi: 10.3389/fpls.2017.01999
CrossRef Google Scholar
|
[147]
|
Nishimura N, Tsuchiya W, Moresco JJ, Hayashi Y, Satoh K, et al. 2018. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Communications 9:2132 doi: 10.1038/s41467-018-04437-9
CrossRef Google Scholar
|
[148]
|
Zhou X, Hao H, Zhang Y, Bai Y, Zhu W, et al. 2015. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC ACID-INSENSITIVE5. Plant Physiology 168:659−76 doi: 10.1104/pp.114.255455
CrossRef Google Scholar
|
[149]
|
Dai M, Xue Q, McCray T, Margavage K, Chen F, et al. 2013. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. The Plant Cell 25:517−34 doi: 10.1105/tpc.112.105767
CrossRef Google Scholar
|
[150]
|
Wang J, Zhang Q, Yu Q, Peng L, Wang J, et al. 2019. CARK6 is involved in abscisic acid to regulate stress responses in Arabidopsis thaliana. Biochemical and Biophysical Research Communications 513:460−64 doi: 10.1016/j.bbrc.2019.03.180
CrossRef Google Scholar
|
[151]
|
Wei P, Liang R, Pan F. 2023. Protein ubiquitination assay. In Regulatory T-Cells. Methods in Molecular Biology, ed. Ono M. vol 2559. New York: Humana. pp. 137−49. https://doi.org/10.1007/978-1-0716-2647-4_10
|
[152]
|
Yang Q, Zhao J, Chen D, Wang Y. 2021. E3 ubiquitin ligases: styles, structures and functions. Molecular Biomedicine 2:23 doi: 10.1186/s43556-021-00043-2
CrossRef Google Scholar
|
[153]
|
Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, et al. 2010. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. The Plant Cell 22:1716−32 doi: 10.1105/tpc.109.073783
CrossRef Google Scholar
|
[154]
|
Nie K, Zhao H, Wang X, Niu Y, Zhou H, et al. 2022. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination. Journal of Integrative Plant Biology 64:930−41 doi: 10.1111/jipb.13234
CrossRef Google Scholar
|
[155]
|
Bueso E, Rodriguez L, Lorenzo-Orts L, Gonzalez-Guzman M, Sayas E, et al. 2014. The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. The Plant Journal 80:1057−71 doi: 10.1111/tpj.12708
CrossRef Google Scholar
|
[156]
|
Zhang X, Garreton V, Chua NH. 2005. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes & Development 19:1532−43 doi: 10.1101/gad.1318705
CrossRef Google Scholar
|
[157]
|
Park GG, Park JJ, Yoon J, Yu SN, An G. 2010. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Molecular Biology 74:467−78 doi: 10.1007/s11103-010-9687-3
CrossRef Google Scholar
|
[158]
|
Dill A, Jung HS, Sun TP. 2001. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences of the United States of America 98:14162−67 doi: 10.1073/pnas.251534098
CrossRef Google Scholar
|
[159]
|
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, et al. 2005. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693−98 doi: 10.1038/nature04028
CrossRef Google Scholar
|
[160]
|
Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, et al. 2004. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiology 135:1008−19 doi: 10.1104/pp.104.039578
CrossRef Google Scholar
|
[161]
|
Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, et al. 2008. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. The Plant Cell 20:2729−45 doi: 10.1105/tpc.108.061515
CrossRef Google Scholar
|
[162]
|
Varshney V, Hazra A, Majee M. 2023. Phy meets ERFs to regulate seed germination. Trends Plant Science 28:7−9 doi: 10.1016/j.tplants.2022.10.003
CrossRef Google Scholar
|
[163]
|
Jiao Y, Lau OS, Deng XW. 2007. Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics 8:217−30 doi: 10.1038/nrg2049
CrossRef Google Scholar
|
[164]
|
de Wit M, Galvão VC, Fankhauser C. 2016. Light-mediated hormonal regulation of plant growth and development. Annual Review of Plant Biology 67:513−37 doi: 10.1146/annurev-arplant-043015-112252
CrossRef Google Scholar
|
[165]
|
Shinomura T, Nagatani A, Furuya M. 1994. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant physiology 104:363−71 doi: 10.1104/pp.104.2.363
CrossRef Google Scholar
|
[166]
|
Oh E, Kim J, Park E, Kim JI, Kang C, et al. 2004. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. The Plant Cell 16:3045−58 doi: 10.1105/tpc.104.025163
CrossRef Google Scholar
|
[167]
|
Majee M, Kumar S, Kathare PK, Wu S, Gingerich D, et al. 2018. KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1. Proceedings of the National Academy of Sciences of the United States of America 115:E4120−E4129 doi: 10.1073/pnas.1711919115
CrossRef Google Scholar
|
[168]
|
Kim DH, Yamaguchi S, Lim S, Oh E, Park J, et al. 2008. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. The Plant Cell 20:1260−77 doi: 10.1105/tpc.108.058859
CrossRef Google Scholar
|
[169]
|
Qi L, Liu S, Li C, Fu J, Jing Y, et al. 2020. PHYTOCHROME-INTERACTING FACTORS interact with the ABA receptors PYL8 and PYL9 to orchestrate ABA signaling in darkness. Molecular Plant 13:414−30 doi: 10.1016/j.molp.2020.02.001
CrossRef Google Scholar
|
[170]
|
Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, et al. 2006. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. The Plant Journal 47:124−39 doi: 10.1111/j.1365-313X.2006.02773.x
CrossRef Google Scholar
|
[171]
|
Li Z, Sheerin DJ, von Roepenack-Lahaye E, Stahl M, Hiltbrunner A. 2022. The phytochrome interacting proteins ERF55 and ERF58 repress light-induced seed germination in Arabidopsis thaliana. Nature Communications 13:1656 doi: 10.1038/s41467-022-29315-3
CrossRef Google Scholar
|
[172]
|
Vaistij FE, Barros-Galvão T, Cole AF, Gilday AD, He Z, et al. 2018. MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 115:8442−47 doi: 10.1073/pnas.1806460115
CrossRef Google Scholar
|
[173]
|
Barros-Galvão T, Dave A, Cole A, Harvey D, Langer S, et al. 2019. cis-12-Oxo-phytodienoic acid represses Arabidopsis seed germination in shade conditions. Journal of Experimental Botany 70:5919−27 doi: 10.1093/jxb/erz337
CrossRef Google Scholar
|
[174]
|
Farooq MA, Ma W, Shen S, Gu A. 2022. Underlying biochemical and molecular mechanisms for seed germination. International Journal of Molecular Sciences 23:8502 doi: 10.3390/ijms23158502
CrossRef Google Scholar
|
[175]
|
Ren XX, Xue JQ, Wang SL, Xue YQ, Zhang P, et al. 2018. Proteomic analysis of tree peony (Paeonia ostii 'Feng Dan') seed germination affected by low temperature. Journal of Plant Physiology 224-225:56−67 doi: 10.1016/j.jplph.2017.12.016
CrossRef Google Scholar
|
[176]
|
Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, et al. 2019. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256:1217−27 doi: 10.1007/s00709-019-01354-6
CrossRef Google Scholar
|
[177]
|
Lim S, Park J, Lee N, Jeong J, Toh S, et al. 2013. ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. The Plant Cell 25:4863−78 doi: 10.1105/tpc.113.118604
CrossRef Google Scholar
|
[178]
|
Yang W, Chen Z, Huang Y, Chang G, Li P, et al. 2019. Powerdress as the novel regulator enhances Arabidopsis seeds germination tolerance to high temperature stress by histone modification of SOM locus. Plant Science 284:91−98 doi: 10.1016/j.plantsci.2019.04.001
CrossRef Google Scholar
|
[179]
|
Ashraf M, Mao Q, Hong J, Shi L, Ran X, et al. 2021. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis. Plant Cell and Environment 44:3616−27 doi: 10.1111/pce.14138
CrossRef Google Scholar
|
[180]
|
Vander Willigen C, Postaire O, Tournaire-Roux C, Boursiac Y, Maurel C. 2006. Expression and inhibition of aquaporins in germinating Arabidopsis seeds. Plant and Cell Physiology 47:1241−50 doi: 10.1093/pcp/pcj094
CrossRef Google Scholar
|
[181]
|
Bewley JD. 1997. Seed Germination and Dormancy. The Plant Cell 9:1055−66 doi: 10.1105/tpc.9.7.1055
CrossRef Google Scholar
|
[182]
|
Hoai PTT, Tyerman SD, Schnell N, Tucker M, McGaughey SA, et al. 2020. Deciphering aquaporin regulation and roles in seed biology. Journal of Experimental Botany 71:1763−73 doi: 10.1093/jxb/erz555
CrossRef Google Scholar
|
[183]
|
Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. 2005. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology 46:1568−77 doi: 10.1093/pcp/pci172
CrossRef Google Scholar
|
[184]
|
Maurel C, Chrispeels MJ. 2001. Aquaporins. A molecular entry into plant water relations. Plant Physiology 125:135−38
Google Scholar
|
[185]
|
Footitt S, Clewes R, Feeney M, Finch-Savage WE, Frigerio L. 2019. Aquaporins influence seed dormancy and germination in response to stress. Plant, Cell & Environment 42:2325−39 doi: 10.1111/pce.13561
CrossRef Google Scholar
|
[186]
|
Feng ZJ, Xu SC, Liu N, Zhang GW, Hu QZ, et al. 2018. Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Gene 646:64−73 doi: 10.1016/j.gene.2017.12.048
CrossRef Google Scholar
|
[187]
|
Schuurmans JAMJ, van Dongen JT, Rutjens BPW, Boonman A, Pieterse CMJ, et al. 2003. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Molecular Biology 53:655−67 doi: 10.1023/B:PLAN.0000019070.60954.77
CrossRef Google Scholar
|
[188]
|
Chang W, Liu X, Zhu J, Fan W, Zhang Z. 2016. An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. Plant Cell Reports 35:385−95 doi: 10.1007/s00299-015-1891-9
CrossRef Google Scholar
|
[189]
|
Dorone Y, Boeynaems S, Flores E, Jin B, Hateley S, et al. 2021. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 184:E4284−E4298.E27 doi: 10.1016/j.cell.2021.06.009
CrossRef Google Scholar
|
[190]
|
Penfield S. 2021. Water sensing in seeds by FLOE1 phase transitions. Developmental Cell 56:2140−41 doi: 10.1016/j.devcel.2021.07.012
CrossRef Google Scholar
|
[191]
|
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, et al. 2012. Seed germination and vigor. Annual Review of Plant Biology 63:507−33 doi: 10.1146/annurev-arplant-042811-105550
CrossRef Google Scholar
|