[1]
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, et al. 2022. Recent progress in molecular genetics and omics-driven research in seed biology. Comptes Rendus Biologies 345:61−110 doi: 10.5802/crbiol.104
CrossRef Google Scholar
|
[2]
|
Nambara N, Nonogaki H. 2012. Seed biology in the 21st century: perspectives and new directions. Plant & Cell Physiology 53:1−4 doi: 10.1093/pcp/pcr184
CrossRef Google Scholar
|
[3]
|
Reed RC, Bradford KJ, Khanday I. 2022. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity 128:450−59 doi: 10.1038/s41437-022-00497-2
CrossRef Google Scholar
|
[4]
|
Skuodienė R, Matyžiūtė V. 2022. Soil seed bank in a pre-erosion cereal-grass crop rotation. Plants 11:2636−47 doi: 10.3390/plants11192636
CrossRef Google Scholar
|
[5]
|
Muoneke OB, Okere KI, Nwaeze CN. 2022. Agriculture, globalization, and ecological footprint: the role of agriculture beyond the tipping point in the Philippines. Environmental Science and Pollution Research 29:54652−79 doi: 10.1007/s11356-022-19720-y
CrossRef Google Scholar
|
[6]
|
Linkies A, Graeber K, Knight C, Leubner-Metzger G. 2010. The evolution of seeds. New Phytologist 186:817−31 doi: 10.1111/j.1469-8137.2010.03249.x
CrossRef Google Scholar
|
[7]
|
Matilla AJ. 2019. Seed coat formation: its evolution and regulation. Seed Science Research 29:215−26 doi: 10.1017/S0960258519000254
CrossRef Google Scholar
|
[8]
|
Kozieradzka-Kiszkurno M, Majcher D, Brzezicka E, Rojek J, Wróbel-Marek J, et al. 2020. Development of embryo suspensors for five genera of Crassulaceae with special emphasis on plasmodesmata distribution and ultrastructure. Plants 9:320 doi: 10.3390/plants9030320
CrossRef Google Scholar
|
[9]
|
Morley-Smith ER, Pike MJ, Findlay K, Köckenberger W, Hill LM, et al. 2008. The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. Plant Physiology 147:2121−30 doi: 10.1104/pp.108.124644
CrossRef Google Scholar
|
[10]
|
Olsen OA. 2004. Nuclear endosperm development in cereals and Arabidopsis thaliana. The Plant Cell 16:S214−S227 doi: 10.1105/tpc.017111
CrossRef Google Scholar
|
[11]
|
Becraft PW, Gutierrez-Marcos J. 2012. Endosperm development: dynamic processes and cellular innovations underlying sibling altruism. WIREs Developmental Biology 1:579−93 doi: 10.1002/wdev.31
CrossRef Google Scholar
|
[12]
|
Fan Y, Li Y. 2019. Molecular, cellular and Yin-Yang regulation of grain size and number in rice. Molecular Breeding 39:163 doi: 10.1007/s11032-019-1078-0
CrossRef Google Scholar
|
[13]
|
Syrovatkina V, Alegre KO, Dey R, Huang XY. 2016. Regulation, signaling, and physiological functions of G-proteins. Journal of Molecular Biology 428:3850−68 doi: 10.1016/j.jmb.2016.08.002
CrossRef Google Scholar
|
[14]
|
Ofoe R. 2021. Signal transduction by plant heterotrimeric G-protein. Plant Biology 23:3−10 doi: 10.1111/plb.13172
CrossRef Google Scholar
|
[15]
|
Temple BRS, Jones AM. 2007. The plant heterotrimeric G-protein complex. Annual Review of Plant Biology 58:249−66 doi: 10.1146/annurev.arplant.58.032806.103827
CrossRef Google Scholar
|
[16]
|
Pandey S. 2019. Heterotrimeric G-protein signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 70:213−38 doi: 10.1146/annurev-arplant-050718-100231
CrossRef Google Scholar
|
[17]
|
Urano D, Chen JG, Botella JR, Jones AM. 2013. Heterotrimeric G protein signalling in the plant kingdom. Open Biology 3:120186 doi: 10.1098/rsob.120186
CrossRef Google Scholar
|
[18]
|
Arterburn JB, Prossnitz ER. 2023. G protein-coupled estrogen receptor GPER: molecular pharmacology and therapeutic applications. Annual Review of Pharmacology and Toxicology 63:295−320 doi: 10.1146/annurev-pharmtox-031122-121944
CrossRef Google Scholar
|
[19]
|
Wang W, Qiao Y, Li Z. 2018. New insights into modes of GPCR activation. Trends in Pharmacological Sciences 39:367−86 doi: 10.1016/j.tips.2018.01.001
CrossRef Google Scholar
|
[20]
|
Dupré DJ, Robitaille M, Rebois RV, Hébert TE. 2009. The role of Gβγ subunits in the organization, assembly, and function of GPCR signaling complexes. Annual Review of Pharmacology and Toxicology 49:31−56 doi: 10.1146/annurev-pharmtox-061008-103038
CrossRef Google Scholar
|
[21]
|
Koelle MR. 2006. Heterotrimeric G protein signaling: Getting inside the cell. Cell 127:25−27 doi: 10.1016/j.cell.2006.06.026
CrossRef Google Scholar
|
[22]
|
Pandey S, Wang RS, Wilson L, Li S, Zhao Z, et al. 2010. Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Molecular Systems Biology 6:372 doi: 10.1038/msb.2010.28
CrossRef Google Scholar
|
[23]
|
Urano D, Jones AM. 2014. Heterotrimeric G protein-coupled signaling in plants. Annual Review of Plant Biology 65:365−84 doi: 10.1146/annurev-arplant-050213-040133
CrossRef Google Scholar
|
[24]
|
Roy Choudhury S, Pandey S. 2016. Interaction of heterotrimeric G-protein components with receptor-like kinases in plants: an alternative to the established signaling paradigm? Molecular Plant 9:1093−95 doi: 10.1016/j.molp.2016.05.012
CrossRef Google Scholar
|
[25]
|
Pandey S, Assmann SM. 2004. The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. The Plant Cell 16:1616−32 doi: 10.1105/tpc.020321
CrossRef Google Scholar
|
[26]
|
Gookin TE, Kim J, Assmann SM. 2008. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling. Genome Biology 9:R120 doi: 10.1186/gb-2008-9-7-r120
CrossRef Google Scholar
|
[27]
|
Pandey S, Nelson D, Assmann S. 2009. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136−48 doi: 10.1016/j.cell.2008.12.026
CrossRef Google Scholar
|
[28]
|
Duan P, Li Y. 2021. Size matters: G protein signaling is crucial for grain size control in rice. Molecular Plant 14:1618−20 doi: 10.1016/j.molp.2021.08.010
CrossRef Google Scholar
|
[29]
|
Wang Y, Wang Y, Deng D. 2019. Multifaceted plant G protein: interaction network, agronomic potential, and beyond. Planta 249:1259−66 doi: 10.1007/s00425-019-03112-7
CrossRef Google Scholar
|
[30]
|
Assmann SM. 2004. Plant G proteins, phytohormones, and plasticity: three questions and a speculation. Science Signaling 264:re20 doi: 10.1126/stke.2642004re20
CrossRef Google Scholar
|
[31]
|
Nan J, Feng X, Wang C, Zhang X, Wang R, et al. 2018. Improving rice grain length through updating the GS3 locus of an elite variety Kongyu 131. Rice 11:21 doi: 10.1186/s12284-018-0217-2
CrossRef Google Scholar
|
[32]
|
Yoon DK, Suganami M, Ishiyama K, Kagawa T, Tanaka M, et al. 2022. The gs3 allele from a large-grain rice cultivar, Akita 63, increases yield and improves nitrogen-use efficiency. Plant Direct 6:e417 doi: 10.1002/pld3.417
CrossRef Google Scholar
|
[33]
|
Cui Y, Jiang N, Xu Z, Xu Q. 2020. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. BMC Plant Biology 20:90−102 doi: 10.1186/s12870-020-2289-6
CrossRef Google Scholar
|
[34]
|
Seo HS, Kim HY, Jeong JY, Lee SY, Cho MJ, et al. 1995. Molecular cloning and characterization of RGA1 encoding α G protein a subunit from rice (Oryza sativa L. IR-36). Plant Molecular Biology 27:1119−31 doi: 10.1007/BF00020885
CrossRef Google Scholar
|
[35]
|
Ishikawa A, Tsubouchi H, Iwasaki Y, Asahi T. 1995. Molecular cloning and characterization of a cDNA for the α subunit of a G protein from rice. Plant and Cell Physiology 36:353−59 doi: 10.1093/oxfordjournals.pcp.a078767
CrossRef Google Scholar
|
[36]
|
Izawa Y, Takayanagi Y, Inaba N, Abe Y, Minami M, et al. 2010. Function and expression pattern of the α subunit of the heterotrimeric G protein in rice. Plant and Cell Physiology 51:271−81 doi: 10.1093/pcp/pcp186
CrossRef Google Scholar
|
[37]
|
Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, et al. 1999. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. PNAS 96:7575−80 doi: 10.1073/pnas.96.13.7575
CrossRef Google Scholar
|
[38]
|
Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A, et al. 1999. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. PNAS 96:10284−89 doi: 10.1073/pnas.96.18.10284
CrossRef Google Scholar
|
[39]
|
Ma S, Zhong Y, Zheng S, He Y, Yang S, et al. 2023. Rapid identification by resequencing-based QTL mapping of a novel allele RGA1-FH decreasing grain length in a rice restorer line ‘Fuhui212’. International Journal of Molecular Sciences 24:10746−55 doi: 10.3390/ijms241310746
CrossRef Google Scholar
|
[40]
|
Miura K, Agetsuma M, Kitano H, Yoshimura A, Matsuoka M, et al. 2009. A metastable DWARF1 epigenetic mutant affecting plant stature in rice. PNAS 106:11218−23 doi: 10.1073/pnas.0901942106
CrossRef Google Scholar
|
[41]
|
Peng P, Gao YD, Li Z, Yu YW, Qin H, et al. 2019. A dwarfing mutant caused by deactivation function of alpha subunit of the heterotrimeric G-protein in rice. International Journal of Molecular Science 20:167−183 doi: 10.3390/ijms20010167
CrossRef Google Scholar
|
[42]
|
Xu CM, Chen LP, Chen S, Chu G, Wang DY, et al. 2020. Rhizosphere aeration improves nitrogen transformation in soil, and nitrogen absorption and accumulation in rice plants. Rice Science 27:162−74
Google Scholar
|
[43]
|
Sun H, Qian Q, Wu K, Luo J, Wang S, et al. 2014. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics 46:652−56 doi: 10.1038/ng.2958
CrossRef Google Scholar
|
[44]
|
Prasanna JA, Mandal VK, Kumar D, Chakraborty N, Raghuram N. 2023. Nitrate-responsive transcriptome analysis of rice RGA1 mutant reveals the role of G-protein alpha subunit in negative regulation of nitrogen-sensitivity and use efficiency. Plant Cell Reports 42:1987−2010 doi: 10.1007/s00299-023-03078-7
CrossRef Google Scholar
|
[45]
|
Zhu Y, Li T, Xu T, Wang J, Wang L, et al. 2020. Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Plant Physiology and Biochemistry 157:359−69 doi: 10.1016/j.plaphy.2020.10.035
CrossRef Google Scholar
|
[46]
|
Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, et al. 2000. Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction. PNAS 97:11638−43 doi: 10.1073/pnas.97.21.11638
CrossRef Google Scholar
|
[47]
|
Wang L, Xu YY, Ma QB, Li D, Xu ZH, et al. 2006. Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Research 16:916−26 doi: 10.1038/sj.cr.7310111
CrossRef Google Scholar
|
[48]
|
Hu X, Qian Q, Xu T, Zhang Y, Dong G, et al. 2013. The U-Box E3 ubiquitin ligase TUD1 functions with a heterotrimeric Gα subunit to regulate Brassinosteroid-mediated growth in rice. Plos Genetics 9:e1003391 doi: 10.1371/journal.pgen.1003391
CrossRef Google Scholar
|
[49]
|
Liu Y, Li T, Jiang Z, Zeng C, He R, et al. 2022. Characterization of a novel weak allele of RGA1/D1 and its potential application in rice breeding. Rice Science 37:522−34 doi: 10.1016/j.rsci.2022.03.001
CrossRef Google Scholar
|
[50]
|
Ishikawa A, Iwasaki Y, Asahi T. 1996. Molecular cloning and characterization of a cDNA for the rβ subunit of a G protein from rice. Plant and Cell Physiology 37:223−28 doi: 10.1093/oxfordjournals.pcp.a028935
CrossRef Google Scholar
|
[51]
|
Gao Y, Gu H, Leburu M, Li X, Wang Y, et al. 2019. The heterotrimeric G protein β subunit RGB1 is required for seedling formation in rice. Rice 12:53−66 doi: 10.1186/s12284-019-0313-y
CrossRef Google Scholar
|
[52]
|
Zhang D, Zhang M, Liang J. 2021. RGB1 regulates grain development and starch accumulation through its effect on OsYUC11-mediated auxin biosynthesis in rice endosperm cells. Frontiers in Plant Science 12:585174 doi: 10.3389/fpls.2021.585174
CrossRef Google Scholar
|
[53]
|
Panda D, Mohanty S, Das S, Mishra B, Baig MJ, et al. 2023. Light intensity-mediated auxin homeostasis in spikelets links carbohydrate metabolism enzymes with grain filling rate in rice. Protoplasma 260:1233−51 doi: 10.1007/s00709-023-01844-8
CrossRef Google Scholar
|
[54]
|
Sun S, Wang L, Mao H, Shao L, Li X, et al. 2018. A G-protein pathway determines grain size in rice. Nature Communications 9:851−61 doi: 10.1038/s41467-018-03141-y
CrossRef Google Scholar
|
[55]
|
Abbas W, Shalmani A, Zhang J, Sun Q, Zhang C, et al. 2024. The GW5-WRKY53-SGW5 module regulates grain size variation in rice. New phytologist 242:2011−25 doi: 10.1111/nph.19704
CrossRef Google Scholar
|
[56]
|
Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, et al. 2011. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. The Plant Journal 67:907−16 doi: 10.1111/j.1365-313X.2011.04643.x
CrossRef Google Scholar
|
[57]
|
Wang Y, Lin H, Tong X, Hou Y, Chang Y, et al. 2017. DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.). Plant Physiology and Biochemistry 120:169−78 doi: 10.1016/j.plaphy.2017.09.018
CrossRef Google Scholar
|
[58]
|
Wu Q, Xu F, Liu L, Char SN, Ding Y, et al. 2020. The maize heterotrimeric G protein β subunit controls shoot meristem development and immune responses. PNAS 117:1799−805 doi: 10.1073/pnas.1917577116
CrossRef Google Scholar
|
[59]
|
Zhang K, Zhang H, Pan Y, Niu Y, Guo L, et al. 2022. Cell- and noncell-autonomous AUXIN RESPONSE FACTOR3 controls meristem proliferation and phyllotactic patterns. Plant Physiology 190:2335−49 doi: 10.1093/plphys/kiac370
CrossRef Google Scholar
|
[60]
|
Xu R, Li N, Li Y. 2019. Control of grain size by G protein signaling in rice. Journal of Integrative Plant Biology 61:533−40 doi: 10.1111/jipb.12769
CrossRef Google Scholar
|
[61]
|
Tao Y, Miao J, Wang J, Li W, Xu Y, et al. 2020. RGG1, involved in the cytokinin regulatory pathway, controls grain size in rice. Rice 13:76 doi: 10.1186/s12284-020-00436-x
CrossRef Google Scholar
|
[62]
|
Miao J, Yang Z, Zhang D, Wang Y, Xu M, et al. 2019. Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnology Journal 17:650−64 doi: 10.1111/pbi.13005
CrossRef Google Scholar
|
[63]
|
Kong FN, Wang JY, Zou JC, Shi LX, Jin MD, et al. 2007. Molecular tagging and mapping of the erect panicle gene in rice. Molecular Breeding 19:297−304 doi: 10.1007/s11032-006-9062-x
CrossRef Google Scholar
|
[64]
|
Wang J, Nakazaki T, Chen S, Chen W, Saito H, et al. 2009. Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theoretical and Applied Genetics 119:85−91 doi: 10.1007/s00122-009-1019-0
CrossRef Google Scholar
|
[65]
|
Chen S, Tang L, Sun J, Xu Q, Xu Z, et al. 2021. Contribution and prospect of erect panicle type to japonica super rice. Rice Science 28:431−41 doi: 10.1016/j.rsci.2021.07.004
CrossRef Google Scholar
|
[66]
|
Huang X, Qian Q, Liu Z, Sun H, He S, et al. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics 41:494−97 doi: 10.1038/ng.352
CrossRef Google Scholar
|
[67]
|
Zhao M, Sun J, Xiao Z, Cheng F, Xu H, et al. 2016. Variations in DENSE AND ERECT PANICLE 1 (DEP1) contribute to the diversity of the panicle trait in high-yielding japonica rice varieties in northern China. Breeding Science 66:599−605 doi: 10.1270/jsbbs.16058
CrossRef Google Scholar
|
[68]
|
Li X, Tao Q, Miao J, Yang Z, Gu M. et al. 2019. Evaluation of differential qPE9-1/DEP1 protein domains in rice grain length and weight variation. Rice 12:5 doi: 10.1186/s12284-019-0263-4
CrossRef Google Scholar
|
[69]
|
Zhang DP, Zhang MY, Zhou Y, Wang YZ, Shen JY. et al. 2019. The rice G protein γ subunit DEP1/qPE9–1 positively regulates grain-filling process by increasing Auxin and cytokinin content in rice grains. Rice 12:91 doi: 10.1186/s12284-019-0344-4
CrossRef Google Scholar
|
[70]
|
Liu Q, Han R, Wu K, Zhang J, Ye Y, et al. 2018. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature Communications 9:852 doi: 10.1038/s41467-018-03047-9
CrossRef Google Scholar
|
[71]
|
Lu Z, Yu H, Xiong G, Wang J, Jiao Y, et al. 2013. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. The Plant Cell 25:3743−59 doi: 10.1105/tpc.113.113639
CrossRef Google Scholar
|
[72]
|
Wang S, Li S, Liu Q, Wu K, Zhang J, et al. 2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics 47:949−954 doi: 10.1038/ng.3352
CrossRef Google Scholar
|
[73]
|
Wu Y, Zhao Y, Yu J, Wu C, Wang Q, et al. 2023. Heterotrimeric G protein γ subunit DEP1 synergistically regulates grain quality and yield by modulating the TTP (TON1-TRM-PP2A) complex in rice. Journal of Genetics and Genomics 50:528−531 doi: 10.1016/j.jgg.2023.02.009
CrossRef Google Scholar
|
[74]
|
Wang Y, Lv Y, Yu H, Hu P, Wen Y, et al. 2024. GR5 acts in the G protein pathway to regulate grain size in rice. Plant Communications 18:100673 doi: 10.1016/j.xplc.2023.100673
CrossRef Google Scholar
|
[75]
|
Xu Q, Liu T, Bi W, Wang Y, Xu H, et al. 2015. Different effects of DEP1 on vascular bundle- and panicle-related traits under indica and japonica genetic backgrounds. Molecular Breeding 35:173 doi: 10.1007/s11032-015-0364-8
CrossRef Google Scholar
|
[76]
|
Huang LY, Li XX, Zhang YB, Fahad S, Wang F. 2022. dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation. Journal of Integrative Agriculture 21:3185−98 doi: 10.1016/j.jia.2022.07.057
CrossRef Google Scholar
|
[77]
|
Zhao M, Zhao M, Gu S, Sun J, Ma Z, et al. 2019. DEP1 is involved in regulating the carbon–nitrogen metabolic balance to affect grain yield and quality in rice (Oryza sativa L.). PloS One 14:e0213504 doi: 10.1371/journal.pone.0213504
CrossRef Google Scholar
|
[78]
|
Yi X, Zhang Z, Zeng S, Tian C, Peng J, et al. 2011. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). Journal of genetics and genimics 38:217−23 doi: 10.1016/j.jgg.2011.03.011
CrossRef Google Scholar
|
[79]
|
Xu X, Xu Z, Matsue Y, Xu Q, et al. 2019. Effects of genetic background and environmental conditions on texture properties in a recombinant inbred population of an inter-subspecies cross. Rice 12:32 doi: 10.1186/s12284-019-0286-x
CrossRef Google Scholar
|
[80]
|
Zhou Y, Zhu J, Li Z, Yi C, Liu J, et al. 2009. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183:315−24 doi: 10.1534/genetics.109.102681
CrossRef Google Scholar
|
[81]
|
Fan C, Xing Y, Mao H, Lu T, Han B, et al. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics 112:1164−71 doi: 10.1007/s00122-006-0218-1
CrossRef Google Scholar
|
[82]
|
Mao H, Sun S, Yao J, Wang C, Yu S, et al. 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. PNAS 107:19579−84 doi: 10.1073/pnas.1014419107
CrossRef Google Scholar
|
[83]
|
Fan C, Yu S, Wang C, Xing Y, et al. 2009. A causal C–A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theoretical and Applied Genetics 118:465−72 doi: 10.1007/s00122-008-0913-1
CrossRef Google Scholar
|
[84]
|
Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, et al. 2009. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323−34 doi: 10.1534/genetics.109.103002
CrossRef Google Scholar
|
[85]
|
Zhang J, Zhang D, Fan Y, Li C, Xu P, et al. 2021. The identification of grain size genes by RapMap reveals directional selection during rice domestication. Nature Communications 12:5673 doi: 10.1038/s41467-021-25961-1
CrossRef Google Scholar
|
[86]
|
Zhang H, Yu F, Xie P, Sun S, Qiao X, et al. 2023. A Gγ protein regulates alkaline sensitivity in crops. Science 379:eade8416 doi: 10.1126/science.ade8416
CrossRef Google Scholar
|
[87]
|
Yang W, Wu K, Wang B, Liu H, Guo S, et al. 2021. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. Molecular Plant 14:1699−713 doi: 10.1016/j.molp.2021.06.027
CrossRef Google Scholar
|
[88]
|
Yan S, Zou G, Li S, Wang H, Liu H, et al. 2011. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theoretical and Applied Genetics 123:1173−81 doi: 10.1007/s00122-011-1657-x
CrossRef Google Scholar
|
[89]
|
Gao X, Zhang X, Lan H, Huang J, Wang J, et al. 2015. The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. BMC Plant Biology 15:156 doi: 10.1186/s12870-015-0515-4
CrossRef Google Scholar
|
[90]
|
Kim TW, Guan S, Sun Y, Deng Z, Tang W, et al. 2009. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology 11:1254−60 doi: 10.1038/ncb1970
CrossRef Google Scholar
|
[91]
|
Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, et al. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development 146:dev151894 doi: 10.1242/dev.151894
CrossRef Google Scholar
|
[92]
|
Zhang Y, Liu J, Xia X, He Z. 2014. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding 34:1094−107 doi: 10.1007/s11032-014-0102-7
CrossRef Google Scholar
|
[93]
|
Yang J, Zhou Y, Zhang Y, Hu W, Wu Q, et al. 2019. Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.). BMC Genetics 20:98 doi: 10.1186/s12863-019-0800-6
CrossRef Google Scholar
|
[94]
|
Li Q, Yang X, Bai G, Warburton LM, Mahuku G, et al. 2010. Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theoretical and Applied Genetics 120:753−63 doi: 10.1007/s00122-009-1196-x
CrossRef Google Scholar
|
[95]
|
Xie P, Tang S, Chen C, Zhang H, Yu F, et al. 2022. Natural variation in Glume Coverage 1 causes naked grains in sorghum. Nature Communications 13:1068 doi: 10.1038/s41467-022-28680-3
CrossRef Google Scholar
|
[96]
|
Li S, Liu Y, Zheng L, Chen L, Li N, et al. 2012. The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana. New Phytologist 194:690−703 doi: 10.1111/j.1469-8137.2012.04083.x
CrossRef Google Scholar
|
[97]
|
Liu L, Zhou Y, Mao F, Gu Y, Tang Z, et al. 2022. Fine-tuning of the grain size by alternative splicing of GS3 in rice. Rice 15:4 doi: 10.1186/s12284-022-00549-5
CrossRef Google Scholar
|
[98]
|
Kwon Y, Lee JY, Choi J, Lee SM, Kim D, et al. 2023. Loss-of-function gs3 allele decreases methane emissions and increases grain yield in rice. Nature Climate Change 13:1329−33 doi: 10.1038/s41558-023-01872-5
CrossRef Google Scholar
|
[99]
|
Steffens B, Sauter M. 2009. Heterotrimeric G protein signaling is required for epidermal cell death in rice. Plant Physiology 151:732−40 doi: 10.1104/pp.109.142133
CrossRef Google Scholar
|
[100]
|
Pathak RR, Mandal VK, Jangam AP, Sharma N, Madan B, et al. 2021. Heterotrimeric G-protein α subunit (RGA1) regulates tiller development, yield, cell wall, nitrogen response and biotic stress in rice. Scientific Reports 11:2323 doi: 10.1038/s41598-021-81824-1
CrossRef Google Scholar
|
[101]
|
Ferrero-Serrano Á, Assmann SM. 2016. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. Journal of Experimental Botany 67:3433−43 doi: 10.1093/jxb/erw183
CrossRef Google Scholar
|
[102]
|
Feng B, Xu Y, Fu W, Li H, Li G, et al. 2023. RGA1 negatively regulates thermo-tolerance by affecting carbohydrate metabolism and the energy supply in rice. Rice 16:32 doi: 10.1186/s12284-023-00649-w
CrossRef Google Scholar
|
[103]
|
Yadav DK, Shukla D, Tuteja N. 2014. Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1). Plant Signaling & Behavior 9:e28890 doi: 10.4161/psb.28890
CrossRef Google Scholar
|
[104]
|
Zhang DP, Zhou Y, Yin JF, Yan XJ, Lin S, et al. 2015. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation. Journal of Experimental Botany 66:6371−84 doi: 10.1093/jxb/erv350
CrossRef Google Scholar
|
[105]
|
Biswas S, Islam MN, Sarker S, Tuteja N, Seraj ZI. 2019. Overexpression of heterotrimeric G protein beta subunit gene (OsRGB1) confers both heat and salinity stress tolerance in rice. Plant Physiology and Biochemistry 144:334−44 doi: 10.1016/j.plaphy.2019.10.005
CrossRef Google Scholar
|
[106]
|
Swain DM, Sahoo RK, Chandan RK, Ghosh S, Kumar R, et al. 2019. Concurrent overexpression of rice G-protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice. Planta 250:1505−20 doi: 10.1007/s00425-019-03241-z
CrossRef Google Scholar
|
[107]
|
Chen Y, Chen Y, Zhang Y, Zhang D, Li G, et al. 2021. Heterotrimeric G protein γ subunit DEP1 is involved in hydrogen peroxide signaling and promotes aerenchyma formation in rice roots. Plant Signaling & Behavior 16:1889251 doi: 10.1080/15592324.2021.1889251
CrossRef Google Scholar
|
[108]
|
Liu JM, Mei Q, Xue CY, Wang ZY, Li PD, et al. 2021. Mutation of G-protein γ subunit DEP1 increases planting density and resistance to sheath blight disease in rice. Plant Biotechnology Journal 19:418−20 doi: 10.1111/pbi.13500
CrossRef Google Scholar
|
[109]
|
Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, et al. 2013. Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants. Journal of Experimental Botany 64:4517−27 doi: 10.1093/jxb/ert267
CrossRef Google Scholar
|
[110]
|
Wang P, Zhou GL, Yu HH, Yu SB. 2011. Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theoretical and Applied Genetics 123:1319−30 doi: 10.1007/s00122-011-1669-6
CrossRef Google Scholar
|
[111]
|
Takano-Kai N, Doi K, Yoshimura A. 2011. GS3 participates in stigma exsertion as well as seed length in rice. Breeding Science 61:244−50 doi: 10.1270/jsbbs.61.244
CrossRef Google Scholar
|
[112]
|
Kan Y, Mu XR, Zhang H, Gao J, Shan JX, et al. 2022. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nature Plants 8:53−67 doi: 10.1038/s41477-021-01039-0
CrossRef Google Scholar
|
[113]
|
Shen Y, Yang G, Miao X, Shi Z. 2023. OsmiR159 modulate BPH resistance through regulating G-protein γ subunit GS3 gene in Rice. Rice 16:30 doi: 10.1186/s12284-023-00646-z
CrossRef Google Scholar
|
[114]
|
Huang L, Li Q, Zhang C, Chu R, Gu Z, et al. 2020. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnology Journal 18:2164−66 doi: 10.1111/pbi.13391
CrossRef Google Scholar
|
[115]
|
Wang Z, Wei K, Xiong M, Wang JD, Zhang CQ, et al. 2021. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. Plant Biotechnology Journal 19:2606−18 doi: 10.1111/pbi.13686
CrossRef Google Scholar
|
[116]
|
Li C, Li W, Zhou Z, Chen H, Xie C, et al. 2020. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnology Journal 18:313−15 doi: 10.1111/pbi.13217
CrossRef Google Scholar
|
[117]
|
Ma M, Wang W, Fei Y, Cheng H, Song B, et al. 2022. A surface-receptor-coupled G protein regulates plant immunity through nuclear protein kinases. Cell Host & Microbe 30:1602−1614.E5 doi: 10.1016/j.chom.2022.09.012
CrossRef Google Scholar
|
[118]
|
Oka M, Yoneda Y. 2018. Importin α: functions as a nuclear transport factor and beyond. Proceedings of the Japan Academy Series B, Physical and Biological Sciences 94:259−74 doi: 10.2183/pjab.94.018
CrossRef Google Scholar
|