[1]
|
Li X, Fan J, Luo S, Yin L, Liao H, et al. 2021. Comparative transcriptome analysis identified important genes and regulatory pathways for flower color variation in Paphiopedilum hirsutissimum. BMC Plant Biology 21:495 doi: 10.1186/s12870-021-03256-3
CrossRef Google Scholar
|
[2]
|
Luo X, Sun D, Wang S, Luo S, Fu Y, et al. 2021. Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers. Horticuture Research 8:235 doi: 10.1038/s41438-021-00666-0
CrossRef Google Scholar
|
[3]
|
Noda N. 2018. Recent advances in the research and development of blue flowers. Breeding Science 68:79−87 doi: 10.1270/jsbbs.17132
CrossRef Google Scholar
|
[4]
|
Stavenga DG, Leertouwer HL, Dudek B, Van Der Kooi CJ. 2020. Coloration of flowers by flavonoids and consequences of pH dependent absorption. Frontiers Plant Science 11:600124 doi: 10.3389/fpls.2020.600124
CrossRef Google Scholar
|
[5]
|
Dalrymple RL, Kemp DJ, Flores-Moreno H, Laffan SW, White TE, et al. 2020. Macroecological patterns in flower colour are shaped by both biotic and abiotic factors. New Phytologist 228:1972−85 doi: 10.1111/nph.16737
CrossRef Google Scholar
|
[6]
|
Ali HM, Almagribi W, Al-rashidi MN. 2016. Antiradical and reductant activities of anthocyanidins and anthocyanins, structure-activity relationship and synthesis. Food Chemistry 194:1275−82 doi: 10.1016/j.foodchem.2015.09.003
CrossRef Google Scholar
|
[7]
|
Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261:201−17 doi: 10.11646/phytotaxa.261.3.1
CrossRef Google Scholar
|
[8]
|
Hsu HF, Hsu WH, Lee YI, Mao WT, Yang JY, et al. 2015. Model for perianth formation in orchids. Nature Plants 1:15046 doi: 10.1038/nplants.2015.46
CrossRef Google Scholar
|
[9]
|
Tang Y, Wen W, Li J, Long Y, Chen J. 2023. Rapid propagation and preservation of wild Cymbidium floribundum. Chinese Wild Plant Resources 42:1−6, 11 doi: 10.3969/j.issn.1006-9690.2023.09.001
CrossRef Google Scholar
|
[10]
|
Zhou L, Hu C. 2016. ISSR analysis of interspecific hybrids descendants of Cymbidium cyperifolium var. szechuanicum and C. floribundum. Guihaia 36:949−55 doi: 10.11931/guihaia.gxzw201412019
CrossRef Google Scholar
|
[11]
|
Luo H, Chen X, Xiao H, Chen Y, Liu H, et al. 2022. Pollination biology of Cymbidium floribundum (Orchidaceae). Ecological Science 41:72−80 doi: 10.14108/j.cnki.1008-8873.2022.05.009
CrossRef Google Scholar
|
[12]
|
Chen W, Gong L, Guo Z, Wang W, Zhang H, et al. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant 6:1769−80 doi: 10.1093/mp/sst080
CrossRef Google Scholar
|
[13]
|
Thévenot EA, Roux A, Xu Y, Ezan E, Junot C. 2015. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research 14:3322−35 doi: 10.1021/acs.jproteome.5b00354
CrossRef Google Scholar
|
[14]
|
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883
CrossRef Google Scholar
|
[15]
|
Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28:27−30 doi: 10.1093/nar/28.1.27
CrossRef Google Scholar
|
[16]
|
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504 doi: 10.1101/gr.1239303
CrossRef Google Scholar
|
[17]
|
Zhang Y, Xie T, Chen M, Zhou J, Ai Y. 2019. Reference gene selection of real-time quantitative PCR in Cymbidium floribundum. Molecular Plant Breeding 17:8163−69 doi: 10.13271/j.mpb.017.008163
CrossRef Google Scholar
|
[18]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402−08 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[19]
|
Jun J, Lu N, Docampo-Palacios M, Wang X, Dixon RA. 2021. Dual activity of anthocyanidin reductase supports the dominant plant proanthocyanidin extension unit pathway. Science Advances 7:eabg4682 doi: 10.1126/sciadv.abg4682
CrossRef Google Scholar
|
[20]
|
Han Y, Vimolmangkang S, Soria-Guerra RE, Korban SS. 2012. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. Journal of Experimental Botany 63:2437−47 doi: 10.1093/jxb/err415
CrossRef Google Scholar
|
[21]
|
Schwinn KE, Boase MR, Bradley JM, Lewis DH, Deroles SC, et al. 2014. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions. Frontiers Plant Science 5:603 doi: 10.3389/fpls.2014.00603
CrossRef Google Scholar
|
[22]
|
Zhou H, Lin-Wang K, Wang F, Espley RV, Ren F, et al. 2019. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist 221:1919−34 doi: 10.1111/nph.15486
CrossRef Google Scholar
|
[23]
|
Huang D, Tang Z, Fu J, Yuan Y, Deng X, et al. 2020. CsMYB3 and CsRuby1 form an 'Activator-and-Repressor' loop for the regulation of anthocyanin biosynthesis in citrus. Plant and Cell Physiology 61:318−30 doi: 10.1093/pcp/pcz198
CrossRef Google Scholar
|
[24]
|
Upadhyaya G, Das A, Ray S. 2021. A rice R2R3-MYB (OsC1) transcriptional regulator improves oxidative stress tolerance by modulating anthocyanin biosynthesis. Physiologia Plantarum 173:2334−49 doi: 10.1111/ppl.13583
CrossRef Google Scholar
|
[25]
|
Li C, Qiu J, Ding L, Huang M, Huang S, et al. 2017. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals. Plant Physiology amd Biochemistry 112:335−45 doi: 10.1016/j.plaphy.2017.01.019
CrossRef Google Scholar
|
[26]
|
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20:176−85 doi: 10.1016/j.tplants.2014.12.001
CrossRef Google Scholar
|
[27]
|
Shen N, Wang T, Gan Q, Liu S, Wang L, et al. 2022. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry 383:132531 doi: 10.1016/j.foodchem.2022.132531
CrossRef Google Scholar
|
[28]
|
Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, et al. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell 26:962−80 doi: 10.1105/tpc.113.122069
CrossRef Google Scholar
|
[29]
|
Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, et al. 2020. The evolution of flavonoid biosynthesis: a bryophyte perspective. Frontiers in Plant Science 11:7 doi: 10.3389/fpls.2020.00007
CrossRef Google Scholar
|
[30]
|
Roberts WR, Roalson EH. 2017. Comparative transcriptome analyses of flower development in four species of Achimenes (Gesneriaceae). BMC Genomics 18:240 doi: 10.1186/s12864-017-3623-8
CrossRef Google Scholar
|
[31]
|
Naing AH, Kim CK. 2018. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. Plant Molecular Biology 98:1−18 doi: 10.1007/s11103-018-0771-4
CrossRef Google Scholar
|
[32]
|
Chen Z, Lu X, Li Q, Li T, Zhu L, et al. 2021. Systematic analysis of MYB gene family in Acer rubrum and functional characterization of ArMYB89 in regulating anthocyanin biosynthesis. Journal of Experimental Botany 72:6319−35 doi: 10.1093/jxb/erab213
CrossRef Google Scholar
|
[33]
|
Xie D, Li J, Zhang X, Dai Z, Zhou W, et al. 2023. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.). Journal of Integrative Agriculture 22:2335−45 doi: 10.1016/j.jia.2023.04.046
CrossRef Google Scholar
|
[34]
|
Zhou Z, Ying Z, Wu Z, Yang Y, Fu S, et al. 2021. Anthocyanin genes involved in the flower coloration mechanisms of Cymbidium kanran. Frontiers in Plant Science 12:737815 doi: 10.3389/fpls.2021.737815
CrossRef Google Scholar
|
[35]
|
Ai Y, Zheng Q, Wang M, Xiong L, Li P, et al. 2023. Molecular mechanism of different flower color formation of Cymbidium ensifolium. Plant Molecular Biology 113:193−204 doi: 10.1007/s11103-023-01382-0
CrossRef Google Scholar
|
[36]
|
Hsieh MH, Lu HC, Pan ZJ, Yeh HH, Wang SS, et al. 2013. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower. Plant Science 201−202:25−41 doi: 10.1016/j.plantsci.2012.11.003
CrossRef Google Scholar
|
[37]
|
Kriangphan N, Vuttipongchaikij S, Kittiwongwattana C, Suttangkakul A, Pinmanee P, et al. 2015. Effects of sequence and expression of eight anthocyanin biosynthesis genes on floral coloration in four Dendrobium hybrids. The Horticulture Journal 84:83−92 doi: 10.2503/hortj.MI-020
CrossRef Google Scholar
|
[38]
|
Junka N, Kanlayanarat S, Buanong M, Wongchaochant S, Wongs-Aree C. 2011. Analysis of anthocyanins and the expression patterns of genes involved in biosynthesis in two Vanda hybrids. International Journal of Agriculture and Biology 13:873−80
Google Scholar
|
[39]
|
Hieber AD, Mudalige-Jayawickrama RG, Kuehnle AR. 2006. Color genes in the orchid Oncidium Gower Ramsey: identification, expression, and potential genetic instability in an interspecific cross. Planta 223:521−31 doi: 10.1007/s00425-005-0113-z
CrossRef Google Scholar
|
[40]
|
Li H, Tian J, Yao Y, Zhang J, Song T, et al. 2019. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiology and Biochemistry 139:141−51 doi: 10.1016/j.plaphy.2019.03.003
CrossRef Google Scholar
|
[41]
|
Albert S, Delseny M, Devic M. 1997. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. The Plant Journal 11:289−99 doi: 10.1046/j.1365-313X.1997.11020289.x
CrossRef Google Scholar
|
[42]
|
Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18:477−83 doi: 10.1016/j.tplants.2013.06.003
CrossRef Google Scholar
|
[43]
|
Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, et al. 1998. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. The Plant Journal 16:263−76 doi: 10.1046/j.1365-313x.1998.00278.x
CrossRef Google Scholar
|
[44]
|
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660−77 doi: 10.1111/j.1365-313X.2007.03078.x
CrossRef Google Scholar
|
[45]
|
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27 doi: 10.1111/j.1365-313X.2007.03373.x
CrossRef Google Scholar
|
[46]
|
Li BJ, Zheng BQ, Wang JY, Tsai WC, Lu HC, et al. 2020. New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Communications Biology 3:89 doi: 10.1038/s42003-020-0821-8
CrossRef Google Scholar
|
[47]
|
Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10:236−42 doi: 10.1016/j.tplants.2005.03.002
CrossRef Google Scholar
|
[48]
|
Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH, et al. 2015. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiology 168:175−91 doi: 10.1104/pp.114.254599
CrossRef Google Scholar
|
[49]
|
Hou T, Huang M, Liao Y, Lu S, Long Z, et al. 2023. Virus-induced gene silencing (VIGS) for functional analysis of genes involved in the regulation of anthocyanin biosynthesis in the perianth of Phalaenopsis-type Dendrobium hybrids. Scientia Horticulturae 307:111485 doi: 10.1016/j.scienta.2022.111485
CrossRef Google Scholar
|
[50]
|
Sun Y, Chen G, Huang J, Liu D, Xue F, et al. 2021. The Cymbidium goeringii genome provides insight into organ development and adaptive evolution in orchids. Ornamental Plant Research 1:10 doi: 10.48130/OPR-2021-0010
CrossRef Google Scholar
|