[1]
|
Boehm MMA, Ojeda DI, Cronk QCB. 2017. Dissecting the 'bacon and eggs' phenotype: transcriptomics of post-anthesis colour change in Lotus. Annals of Botany 120:563−75 doi: 10.1093/aob/mcx090
CrossRef Google Scholar
|
[2]
|
Zhang Y, Zhao X, Huang S, Zhang L, Zhao J. 2012. Temporal pattern of floral color change and time retention of post-change flowers in Weigela japonica var. sinica (Caprifoliaceae). Journal of Systematics and Evolution 50:519−26 doi: 10.1111/j.1759-6831.2012.00218.x
CrossRef Google Scholar
|
[3]
|
Brito VLG, Weynans K, Sazima M, Lunau K. 2015. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Frontiers in Plant Science 6:362 doi: 10.3389/fpls.2015.00362
CrossRef Google Scholar
|
[4]
|
Weiss MR. 1995. Floral color change: a widespread functional convergence. American Journal of Botany 82:167−85 doi: 10.1002/j.1537-2197.1995.tb11486.x
CrossRef Google Scholar
|
[5]
|
Monniaux M. 2023. Unusual suspects in flower color evolution. Science 379:534−35 doi: 10.1126/science.adg2774
CrossRef Google Scholar
|
[6]
|
Xia Y, Chen W, Xiang W, Wang D, Xue B, et al. 2021. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. BMC Plant Biology 21:98 doi: 10.1186/s12870-021-02877-y
CrossRef Google Scholar
|
[7]
|
Amrhein N, Frank G. 1989. Anthocyanin formation in the petals of Hibiscus mutabilis L. Zeitschrift für Naturforschung C 44:357−60 doi: 10.1515/znc-1989-5-604
CrossRef Google Scholar
|
[8]
|
Macnish AJ, Jiang C, Negre-Zakharov F, Reid MS. 2010. Physiological and molecular changes during opening and senescence of Nicotiana mutabilis flowers. Plant Science 179:267−72 doi: 10.1016/j.plantsci.2010.05.011
CrossRef Google Scholar
|
[9]
|
Farzad M, Griesbach R, Hammond J, Weiss MR, Elmendorf HG. 2003. Differential expression of three key anthocyanin biosynthetic genes in a color-changing flower, Viola cornuta cv. yesterday, today and tomorrow. Plant Science 165:1333−42 doi: 10.1016/j.plantsci.2003.08.001
CrossRef Google Scholar
|
[10]
|
Fukuchi-Mizutani M, Akagi M, Ishiguro K, Katsumoto Y, Fukui Y, et al. 2011. Biochemical and molecular characterization of anthocyanidin/flavonol 3-glucosylation pathways in Rosa×hybrida. Plant Biotechnology 28:239−44 doi: 10.5511/plantbiotechnology.10.1220a
CrossRef Google Scholar
|
[11]
|
Li M, Sun Y, Lu X, Debnath B, Mitra S, et al. 2019. Proteomics reveal the profiles of color change in Brunfelsia acuminata flowers. International Journal of Molecular Sciences 20:2000 doi: 10.3390/ijms20082000
CrossRef Google Scholar
|
[12]
|
Yan J, Wang M, Zhang L. 2018. Light induces petal color change in Quisqualis indica (Combretaceae). Plant Diversity 40:28−34 doi: 10.1016/j.pld.2017.11.004
CrossRef Google Scholar
|
[13]
|
McGimpsey VJ, Lord JM. 2015. In a world of white, flower colour matters: a white–purple transition signals lack of reward in an alpine Euphrasia. Austral Ecology 40:701−08 doi: 10.1111/aec.12238
CrossRef Google Scholar
|
[14]
|
Zhao D, Tao J. 2015. Recent advances on the development and regulation of flower color in ornamental plants. Frontiers in Plant Science 6:261 doi: 10.3389/fpls.2015.00261
CrossRef Google Scholar
|
[15]
|
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science 20:176−85 doi: 10.1016/j.tplants.2014.12.001
CrossRef Google Scholar
|
[16]
|
Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, et al. 2018. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics 50:772−77 doi: 10.1038/s41588-018-0110-3
CrossRef Google Scholar
|
[17]
|
Yan Y, Zhao J, Lin S, Li M, Liu J, et al. 2023. Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b. Journal of Experimental Botany 74:erad253 doi: 10.1093/jxb/erad253
CrossRef Google Scholar
|
[18]
|
He G, Zhang R, Jiang S, Wang H, Ming F. 2023. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Horticulture Research 10: uhad080 doi: 10.1093/hr/uhad080
CrossRef Google Scholar
|
[19]
|
Wang Y, Xiao Y, Sun Y, Zhang X, Du B, et al. 2023. Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry. Plant Physiology 192:2030−48 doi: 10.1093/plphys/kiad137
CrossRef Google Scholar
|
[20]
|
Zhang S, Chen Y, Zhao L, Li C, Yu J, et al. 2020. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiology 40:413−23 doi: 10.1093/treephys/tpaa004
CrossRef Google Scholar
|
[21]
|
Alabd A, Ahmad M, Zhang X, Gao Y, Peng L, et al. 2022. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear. Horticulture Research 9:uhac199 doi: 10.1093/hr/uhac199
CrossRef Google Scholar
|
[22]
|
Jiang S, Chen M, He N, Chen X, Wang N, et al. 2019. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Horticulture Research 6:40 doi: 10.1038/s41438-019-0118-6
CrossRef Google Scholar
|
[23]
|
Kaur S, Sharma N, Kapoor P, Chunduri V, Pandey AK, et al. 2021. Spotlight on the overlapping routes and partners for anthocyanin transport in plants. Physiologia Plantarum 171:868−81 doi: 10.1111/ppl.13378
CrossRef Google Scholar
|
[24]
|
Marrs KA, Alfenito MR, Lloyd AM, Walbot V. 1995. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397−400 doi: 10.1038/375397a0
CrossRef Google Scholar
|
[25]
|
Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, et al. 1998. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. The Plant Cell 10:1135−49 doi: 10.1105/tpc.10.7.1135
CrossRef Google Scholar
|
[26]
|
Sun Y, Li H, Huang J. 2012. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Molecular Plant 5:387−400 doi: 10.1093/mp/ssr110
CrossRef Google Scholar
|
[27]
|
Kitamura S, Akita Y, Ishizaka H, Narumi I, Tanaka A. 2012. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen. Journal of Plant Physiology 169:636−42 doi: 10.1016/j.jplph.2011.12.011
CrossRef Google Scholar
|
[28]
|
Cheng J, Liao L, Zhou H, Gu C, Wang L, et al. 2015. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers. Journal of Experimental Botany 66:7227−39 doi: 10.1093/jxb/erv419
CrossRef Google Scholar
|
[29]
|
Zhao Y, Dong W, Zhu Y, Allan AC, Lin-Wang K, et al. 2020. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal 18:1284−95 doi: 10.1111/pbi.13291
CrossRef Google Scholar
|
[30]
|
Pérez-Díaz R, Madrid-Espinoza J, Salinas-Cornejo J, González-Villanueva E, Ruiz-Lara S. 2016. Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinífera. Frontiers in Plant Science 7:1166 doi: 10.3389/fpls.2016.01166
CrossRef Google Scholar
|
[31]
|
Hu B, Zhao J, Lai B, Qin Y, Wang H, et al. 2016. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Reports 35:831−43 doi: 10.1007/s00299-015-1924-4
CrossRef Google Scholar
|
[32]
|
Luo H, Dai C, Li Y, Feng J, Liu Z, et al. 2018. Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. Journal of Experimental Botany 69:2595−608 doi: 10.1093/jxb/ery096
CrossRef Google Scholar
|
[33]
|
Wei K, Wang L, Zhang Y, Ruan L, Li H, et al. 2019. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal 97:825−40 doi: 10.1111/tpj.14161
CrossRef Google Scholar
|
[34]
|
Kou M, Liu Y, Li Z, Zhang Y, Tang W, et al. 2019. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant Physiology and Biochemistry 135:395−403 doi: 10.1016/j.plaphy.2018.12.028
CrossRef Google Scholar
|
[35]
|
Wang R, Lu N, Liu C, Dixon RA, Wu Q, et al. 2022. MtGSTF7, a TT19-like GST gene, is essential for accumulation of anthocyanins, but not proanthocyanins in Medicago truncatula. Journal of Experimental Botany 73:4129−46 doi: 10.1093/jxb/erac112
CrossRef Google Scholar
|
[36]
|
Goodman CD, Casati P, Walbot V. 2004. A multidrug resistance–associated protein involved in anthocyanin transport in Zea mays. The Plant Cell 16:1812−26 doi: 10.1105/tpc.022574
CrossRef Google Scholar
|
[37]
|
Francisco RM, Regalado A, Ageorges A, Burla BJ, Bassin B, et al. 2013. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides. The Plant Cell 25:1840−54 doi: 10.1105/tpc.112.102152
CrossRef Google Scholar
|
[38]
|
Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, et al. 2009. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiology 150:402−15 doi: 10.1104/pp.109.135624
CrossRef Google Scholar
|
[39]
|
Zhu Q, Xie X, Zhang J, Xiang G, Li Y, et al. 2013. In silico analysis of a MRP transporter gene reveals its possible role in anthocyanins or flavonoids transport in Oryze sativa. American Journal of Plant Sciences 4:555−60 doi: 10.4236/ajps.2013.43072
CrossRef Google Scholar
|
[40]
|
Behrens CE, Smith KE, Iancu CV, Choe J, Dean JV. 2019. Transport of anthocyanins and other flavonoids by the Arabidopsis ATP-binding cassette transporter AtABCC2. Scientific Reports 9:437 doi: 10.1038/s41598-018-37504-8
CrossRef Google Scholar
|
[41]
|
Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, et al. 2007. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. The Plant Cell 19:2023−38 doi: 10.1105/tpc.106.046029
CrossRef Google Scholar
|
[42]
|
Pal L, Dwivedi V, Gupta SK, Saxena S, Pandey A, et al. 2023. Biochemical analysis of anthocyanin and proanthocyanidin and their regulation in determining chickpea flower and seed coat colour. Journal of Experimental Botany 74:130−48 doi: 10.1093/jxb/erac392
CrossRef Google Scholar
|
[43]
|
Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, et al. 2003. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. The Plant Cell 15:1689−703 doi: 10.1105/tpc.012963
CrossRef Google Scholar
|
[44]
|
Zhao J, Huhman D, Shadle G, He X, Sumner LW, et al. 2011. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. The Plant Cell 23:1536−55 doi: 10.1105/tpc.110.080804
CrossRef Google Scholar
|
[45]
|
Shisa M, Takano T. 1964. Effect of temperature and light on the coloration of rose flowers. Journal of the Japanese Society for Horticultural Science 33:140−46 doi: 10.2503/jjshs.33.140
CrossRef Google Scholar
|
[46]
|
Hennayake CK, Kanechi M, Yasuda N, Uno Y, Inagaki N. 2006. Irradiation of UV-B induces biosynthesis of anthocyanins in flower petals of rose, Rosa hybrida cv. 'Charleston' and 'Ehigasa'. Environmental Control in Biology 44:103−10 doi: 10.2525/ecb.44.103
CrossRef Google Scholar
|
[47]
|
Luo J, Li H, Bai B, Yu H, You J. 2013. Effect of light on the anthocyanin biosythesis and expression of CHS and DFR in Rosa chinensis 'Spectra'. Molecular Plant Breeding 11:126−31
Google Scholar
|
[48]
|
Su M, Damaris RN, Hu Z, Yang P, Deng J. 2021. Metabolomic analysis on the petal of 'Chen Xi' rose with light-induced color changes. Plants 10:2065 doi: 10.3390/plants10102065
CrossRef Google Scholar
|
[49]
|
Zhang Y, Wu Z, Feng M, Chen J, Qin M, et al. 2021. The circadian-controlled PIF8–BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ROS homeostasis at night. The Plant Cell 33:2716−35 doi: 10.1093/plcell/koab152
CrossRef Google Scholar
|
[50]
|
Wan H, Yu C, Han Y, Guo X, Luo L, et al. 2019. Determination of flavonoids and carotenoids and their contributions to various colors of rose cultivars (Rosa spp.). Frontiers in Plant Science 10:123 doi: 10.3389/fpls.2019.00123
CrossRef Google Scholar
|
[51]
|
Wan H, Yu C, Han Y, Guo X, Ahmad S, et al. 2018. Flavonols and carotenoids in yellow petals of rose cultivar (Rosa 'Sun City'): a possible rich source of bioactive compounds. Journal of Agricultural and Food Chemistry 66:4171−81 doi: 10.1021/acs.jafc.8b01509
CrossRef Google Scholar
|
[52]
|
Ren C, Chen C, Dong S, Wang R, Xian B, et al. 2022. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in flowers of safflower (Carthamus tinctorius L.) during colour-transition. PeerJ 10:e13591 doi: 10.7717/peerj.13591
CrossRef Google Scholar
|
[53]
|
Han Y, Yu J, Zhao T, Cheng T, Wang J, et al. 2019. Dissecting the genome-wide evolution and function of R2R3-MYB transcription factor family in Rosa chinensis. Genes 10:823 doi: 10.3390/genes10100823
CrossRef Google Scholar
|
[54]
|
Sun Y, Zhang X, Zhong M, Dong X, Yu D, et al. 2020. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae. Plant Molecular Biology 104:81−95 doi: 10.1007/s11103-020-01026-7
CrossRef Google Scholar
|
[55]
|
Ullah I, Yuan W, Uzair M, Li S, Rehman OU, et al. 2022. Molecular characterization of bHLH transcription factor family in rose (Rosa chinensis Jacq.) under Botrytis cinerea infection. Horticulturae 8:989 doi: 10.3390/horticulturae8110989
CrossRef Google Scholar
|
[56]
|
Li D, Li X, Liu X, Zhang Z. 2023. Comprehensive analysis of bZIP gene family and function of RcbZIP17 on Botrytis resistance in rose (Rosa chinensis). Gene 849:146867 doi: 10.1016/j.gene.2022.146867
CrossRef Google Scholar
|
[57]
|
Geng L, Su L, Fu L, Lin S, Zhang J, et al. 2022. Genome-wide analysis of the rose (Rosa chinensis) NAC family and characterization of RcNAC091. Plant Molecular Biology 108:605−19 doi: 10.1007/s11103-022-01250-3
CrossRef Google Scholar
|
[58]
|
Liu X, Li D, Zhang S, Xu Y, Zhang Z. 2019. Genome-wide characterization of the rose (Rosa chinensis) WRKY family and role of RcWRKY41 in gray mold resistance. BMC Plant Biology 19:522 doi: 10.1186/s12870-019-2139-6
CrossRef Google Scholar
|
[59]
|
Shalmani A, Fan S, Jia P, Li G, Muhammad I, et al. 2018. Genome identification of B-BOX gene family members in seven Rosaceae species and their expression analysis in response to flower induction in Malus domestica. Molecules 23:1763 doi: 10.3390/molecules23071763
CrossRef Google Scholar
|
[60]
|
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, et al. 2014. Pfam: the protein families database. Nucleic Acids Research 42:D222−D230 doi: 10.1093/nar/gkt1223
CrossRef Google Scholar
|
[61]
|
Wei L, Zhu Y, Liu R, Zhang A, Zhu M, et al. 2019. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Scientific Reports 9:9196 doi: 10.1038/s41598-019-45744-5
CrossRef Google Scholar
|
[62]
|
Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research 49:D458−D460 doi: 10.1093/nar/gkaa937
CrossRef Google Scholar
|
[63]
|
Shao D, Li Y, Zhu Q, Zhang X, Liu F, et al. 2021. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Science 305:110827 doi: 10.1016/j.plantsci.2021.110827
CrossRef Google Scholar
|
[64]
|
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80 doi: 10.1093/molbev/mst010
CrossRef Google Scholar
|
[65]
|
Kong Y, Wang H, Lang L, Dou X, Bai J. 2022. Effect of developmental stages on genes involved in middle and downstream pathway of volatile terpene biosynthesis in rose petals. Genes 13:1177 doi: 10.3390/genes13071177
CrossRef Google Scholar
|
[66]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[67]
|
Jung S, Lee T, Cheng CH, Buble K, Zheng P, et al. 2019. 15 years of GDR: new data and functionality in the Genome Database for Rosaceae. Nucleic Acids Research 47:D1137−D1145 doi: 10.1093/nar/gky1000
CrossRef Google Scholar
|
[68]
|
Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106 doi: 10.1038/ng.3886
CrossRef Google Scholar
|
[69]
|
de Vienne DM. 2016. Lifemap: exploring the entire tree of life. PLoS Biology 14:e2001624 doi: 10.1371/journal.pbio.2001624
CrossRef Google Scholar
|
[70]
|
Liu M, Xiao F, Zhu J, Fu D, Wang Z, Xiao R. 2023. Combined PacBio Iso-Seq and Illumina RNA-seq analysis of the Tuta absoluta (Meyrick) transcriptome and cytochrome P450 genes. Insects 14:363 doi: 10.3390/insects14040363
CrossRef Google Scholar
|
[71]
|
Cheng C, Yu Q, Wang Y, Wang H, Dong Y, et al. 2021. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida). The Plant Cell 33:1229−51 doi: 10.1093/plcell/koab031
CrossRef Google Scholar
|
[72]
|
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. 2015. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:169 doi: 10.1186/s12859-015-0611-3
CrossRef Google Scholar
|
[73]
|
Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, et al. 2023. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research 51:D638−D646 doi: 10.1093/nar/gkac1000
CrossRef Google Scholar
|
[74]
|
Kong Y, Wang H, Lang L, Dou X, Bai J. 2021. Metabolome-based discrimination analysis of five Lilium bulbs associated with differences in secondary metabolites. Molecules 26:1340 doi: 10.3390/molecules26051340
CrossRef Google Scholar
|
[75]
|
Hennayake CK, Kanechi M, Uno Y, Inagaki N. 2007. Differential expression of anthocyanin biosynthetic genes in 'Charleston' roses. Acta Horticulturae 760:643−50 doi: 10.17660/actahortic.2007.760.91
CrossRef Google Scholar
|
[76]
|
Lallement PA, Brouwer B, Keech O, Hecker A, Rouhier N. 2014. The still mysterious roles of cysteine-containing glutathione transferases in plants. Frontiers in Pharmacology 5:192 doi: 10.3389/fphar.2014.00192
CrossRef Google Scholar
|
[77]
|
Liu Y, Qi Y, Zhang A, Wu H, Liu Z, et al. 2019. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). Plant Molecular Biology 100:451−65 doi: 10.1007/s11103-019-00870-6
CrossRef Google Scholar
|
[78]
|
Li B, Zhang X, Duan R, Han C, Yang J, et al. 2022. Genomic analysis of the glutathione S-transferase family in pear (Pyrus communis) and functional identification of PcGST57 in anthocyanin accumulation. International Journal of Molecular Sciences 23:746 doi: 10.3390/ijms23020746
CrossRef Google Scholar
|
[79]
|
Davis GV, Glover BJ. 2024. Characterisation of the R2R3 Myb subgroup 9 family of transcription factors in tomato. PLoS ONE 19:e0295445 doi: 10.1371/journal.pone.0295445
CrossRef Google Scholar
|
[80]
|
Muñoz-Gómez S, Suárez-Baron H, Alzate JF, González F, Pabón-Mora N. 2021. Evolution of the subgroup 6 R2R3-MYB genes and their contribution to floral color in the perianth-bearing piperales. Frontiers in Plant Science 12:633227 doi: 10.3389/fpls.2021.633227
CrossRef Google Scholar
|
[81]
|
Narbona E, del Valle JC, Arista M, Buide ML, Ortiz PL. 2021. Major flower pigments originate different colour signals to pollinators. Frontiers in Ecology and Evolution 9:743850 doi: 10.3389/fevo.2021.743850
CrossRef Google Scholar
|
[82]
|
Ohashi K, Makino TT, Arikawa K. 2015. Floral colour change in the eyes of pollinators: testing possible constraints and correlated evolution. Functional Ecology 29:1144−55 doi: 10.1111/1365-2435.12420
CrossRef Google Scholar
|
[83]
|
Farzad M, Griesbach R, Weiss MR. 2002. Floral color change in Viola cornuta L. (Violaceae): a model system to study regulation of anthocyanin production. Plant Science 162:225−31 doi: 10.1016/S0168-9452(01)00557-X
CrossRef Google Scholar
|
[84]
|
Rezende FM, Clausen MH, Rossi M, Furlan CM. 2020. The regulation of floral colour change in Pleroma raddianum (DC.) gardner. Molecules 25:4664 doi: 10.3390/molecules25204664
CrossRef Google Scholar
|
[85]
|
Ueda Y, Akimoto S. 2001. Cross- and self-compatibility in various species of the genus Rosa. The Journal of Horticultural Science and Biotechnology 76:392−95 doi: 10.1080/14620316.2001.11511382
CrossRef Google Scholar
|
[86]
|
Li M, Yang Y, Wang H, Fan Y, Sun P, et al. 2022. Identification and analysis of self incompatibility S-RNase in rose. Acta Horticulturae Sinica 49:157−65 doi: 10.16420/j.issn.0513-353x.2020-0758
CrossRef Google Scholar
|
[87]
|
Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, et al. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants 6:921−28 doi: 10.1038/s41477-020-0725-0
CrossRef Google Scholar
|
[88]
|
Li Y, Xu P, Chen G, Wu J, Liu Z, et al. 2020. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5–bHLH9 transcription complex in strawberry fruits. Plant and Cell Physiology 61:826−37 doi: 10.1093/pcp/pcaa010
CrossRef Google Scholar
|
[89]
|
Liu H, Su J, Zhu Y, Yao G, Allan AC, et al. 2019. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture Research 6:134 doi: 10.1038/s41438-019-0217-4
CrossRef Google Scholar
|
[90]
|
Zhao L, Sun J, Cai Y, Yang Q, Zhang Y, et al. 2022. PpHYH is responsible for light-induced anthocyanin accumulation in fruit peel of Prunus persica. Tree Physiology 42:1662−77 doi: 10.1093/treephys/tpac025
CrossRef Google Scholar
|
[91]
|
Bai S, Tao R, Tang Y, Yin L, Ma Y, et al. 2019. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal 17:1985−97 doi: 10.1111/pbi.13114
CrossRef Google Scholar
|
[92]
|
Liu Y, Lin G, Yin C, Fang Y. 2020. B-box transcription factor 28 regulates flowering by interacting with constans. Scientific Reports 10:17789 doi: 10.1038/s41598-020-74445-7
CrossRef Google Scholar
|