[1]
|
Bano MA, Khan J. 2022. The effect of Pseudomonas putida and spermine on growth and bioactive metabolites of Hemerocallis fulva L. leaves. Russian Journal of Plant Physiology 69:132 doi: 10.1134/S1021443722060024
CrossRef Google Scholar
|
[2]
|
Rodriguez-Enriquez MJ, Grant-Downton RT. 2013. A new day dawning: Hemerocallis (daylily) as a future model organism. AoB Plants 5:pls055 doi: 10.1093/aobpla/pls055
CrossRef Google Scholar
|
[3]
|
Sun X, Wu R. 2016. Recent advances in Hemerocallis. Journal of Henan Agricultural Sciences 45:7−11,18 doi: 10.15933/j.cnki.1004-3268.2016.04.002
CrossRef Google Scholar
|
[4]
|
Duan L, Li Y, Liu X, Dong Y, Yu S, et al. 2023. Research progress on breeding of new Hemerocallis varieties at home and abroad. Journal of Nuclear Agricultural Sciences 37:730−39 doi: 10.11869/j.issn.1000-8551.2023.04.0730
CrossRef Google Scholar
|
[5]
|
Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, et al. 2019. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology 70:377−406 doi: 10.1146/annurev-arplant-050718-100434
CrossRef Google Scholar
|
[6]
|
Xu L, Huang H. 2014. Genetic and epigenetic controls of plant regeneration. Current Topics in Developmental Biology 108:1−33 doi: 10.1016/B978-0-12-391498-9.00009-7
CrossRef Google Scholar
|
[7]
|
Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K. 2016. Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442−51 doi: 10.1242/dev.134668
CrossRef Google Scholar
|
[8]
|
Sang Y, Cheng Z, Zhang X. 2018. Plant stem cells and de novo organogenesis. New Phytologist 218:1334−39 doi: 10.1111/nph.15106
CrossRef Google Scholar
|
[9]
|
Shin J, Bae S, Seo PJ. 2020. De novo shoot organogenesis during plant regeneration. Journal of Experimental Botany 71:63−72 doi: 10.1093/jxb/erz395
CrossRef Google Scholar
|
[10]
|
Lee HG, Jang SY, Jie EY, Choi SH, Park OS, et al. 2023. Adenosine monophosphate enhances callus regeneration competence for de novo plant organogenesis. Molecular Plant 16:1867−70 doi: 10.1016/j.molp.2023.10.004
CrossRef Google Scholar
|
[11]
|
Cheng Z, Wang L, Sun W, Zhang Y, Zhou C, et al. 2012. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology 161:240−51 doi: 10.1104/pp.112.203166
CrossRef Google Scholar
|
[12]
|
Ckurshumova W, Smirnova T, Marcos D, Zayed Y, Berleth T. 2014. Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation. New Phytologist 204:556−66 doi: 10.1111/nph.13014
CrossRef Google Scholar
|
[13]
|
Liu K, Yang A, Yan J, Liang Z, Yuan G, et al. 2023. MdAIL5 overexpression promotes apple adventitious shoot regeneration by regulating hormone signaling and activating the expression of shoot development-related genes. Horticulture Research 10:uhad198 doi: 10.1093/hr/uhad198
CrossRef Google Scholar
|
[14]
|
Fan M, Xu C, Xu K, Hu Y. 2012. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Research 22:1169−80 doi: 10.1038/cr.2012.63
CrossRef Google Scholar
|
[15]
|
Zhao D, Wang Y, Feng C, Wei Y, Peng X, et al. 2020. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. The Plant Journal 103:166−83 doi: 10.1111/tpj.14717
CrossRef Google Scholar
|
[16]
|
Mao J, Ma D, Niu C, Ma X, Li K, et al. 2022. Transcriptome analysis reveals the regulatory mechanism by which MdWOX11 suppresses adventitious shoot formation in apple. Horticulture Research 9:uhac080 doi: 10.1093/hr/uhac080
CrossRef Google Scholar
|
[17]
|
Wang K, Shi L, Liang X, Zhao P, Wang W, et al. 2022. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants 8:110−17 doi: 10.1038/s41477-021-01085-8
CrossRef Google Scholar
|
[18]
|
Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, et al. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell 15:2532−50 doi: 10.1105/tpc.014928
CrossRef Google Scholar
|
[19]
|
Zhang T, Lian H, Zhou C, Xu L, Jiao Y, et al. 2017. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. The Plant Cell 29:1073−87 doi: 10.1105/tpc.16.00863
CrossRef Google Scholar
|
[20]
|
Buechel S, Leibfried A, To JPC, Zhao Z, Andersen SU, et al. 2010. Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration. European Journal of Cell Biology 89:279−84 doi: 10.1016/j.ejcb.2009.11.016
CrossRef Google Scholar
|
[21]
|
Chatfield SP, Raizada MN. 2008. Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Reports 27:655−66 doi: 10.1007/s00299-007-0496-3
CrossRef Google Scholar
|
[22]
|
Chen J, Tomes S, Gleav AP, Hall W, Luo Z, et al. 2022. Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a Baby boom transcription factor. Horticulture Research 9:uhab014 doi: 10.1093/hr/uhab014
CrossRef Google Scholar
|
[23]
|
Druege U, Franken P, Hajirezaei MR. 2016. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Frontiers in Plant Science 7:381 doi: 10.3389/fpls.2016.00381
CrossRef Google Scholar
|
[24]
|
Wang X, Ma H, Cao D. 2014. Establishment of regeneration system of Hemeroallis middendorfii Trautv. et Mey 'Sweet Treasure'. Journal of Gansu Agricultural University 49:136−42 doi: 10.3969/j.issn.1003-4315.2014.04.024
CrossRef Google Scholar
|
[25]
|
Zuo G, Cheng X, Yu J, Yin L, Hou F, et al. 2022. Callus induction and plant regeneration from the scape of Hemerocallis citrina. Journal of Agricultural University of Hebei 45:37−42 doi: 10.13320/j.cnki.jauh.2022.0058
CrossRef Google Scholar
|
[26]
|
Zuo G, Li K, Guo Y, Niu X, Yin L, et al. 2024. Development and optimization of a rapid in vitro micropropagation system for the perennial vegetable night lily, Hemerocallis citrina Baroni. Agronomy 14:244 doi: 10.3390/agronomy14020244
CrossRef Google Scholar
|
[27]
|
Lutz KA, Martin C, Khairzada S, Maliga P. 2015. Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Reports 34:1849−56 doi: 10.1007/s00299-015-1832-7
CrossRef Google Scholar
|
[28]
|
Srinivasan C, Liu Z, Heidmann I, Supena EDJ, Fukuoka H, et al. 2007. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341−51 doi: 10.1007/s00425-006-0358-1
CrossRef Google Scholar
|
[29]
|
Yang HF, Kou YP, Gao, B, Soliman TMA, Xu KD, et al. 2014. Identification and functional analysis of BABY BOOM genes from Rosa canina. Biologia plantarum 58:427−35 doi: 10.1007/s10535-014-0420-y
CrossRef Google Scholar
|
[30]
|
Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ, et al. 2015. PLETHORA genes control regeneration by a two-step mechanism. Current Biology 25:1017−30 doi: 10.1016/j.cub.2015.02.022
CrossRef Google Scholar
|
[31]
|
Daimon Y, Takabe K, Tasaka M. 2003. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant and Cell Physiology 44:113−21 doi: 10.1093/pcp/pcg038
CrossRef Google Scholar
|
[32]
|
Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, et al. 2007. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539−48 doi: 10.1242/dev.010298
CrossRef Google Scholar
|
[33]
|
Lian G, Ding Z, Wang Q, Zhang D, Xu J. 2014. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. The Scientific World Journal 2014:534140 doi: 10.1155/2014/534140
CrossRef Google Scholar
|
[34]
|
Wang Y, He S, Long Y, Zhang X, Zhang X, et al. 2022. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize. The Plant Journal 109:980−91 doi: 10.1111/tpj.15609
CrossRef Google Scholar
|
[35]
|
Ikeuchi M, Iwase A, It T, Tanaka H, Favero DS, et al. 2022. Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiology 188:425−41 doi: 10.1093/plphys/kiab510
CrossRef Google Scholar
|
[36]
|
Kim JY, Yang W, Forner J, Lohmann JU, Noh B, et al. 2018. Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in Arabidopsis. The EMBO Journal 37:e98726 doi: 10.15252/embj.201798726
CrossRef Google Scholar
|
[37]
|
Wang J, Tan M, Wang X, Jia L, Wang M, et al. 2023. WUS-RELATED HOMEOBOX 14 boosts de novo plant shoot regeneration. Plant Physiology 192:748−52 doi: 10.1093/plphys/kiad125
CrossRef Google Scholar
|
[38]
|
Wu X, Chory J, Weigel D. 2007. Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Developmental Biology 309:306−16 doi: 10.1016/j.ydbio.2007.07.019
CrossRef Google Scholar
|
[39]
|
Palovaara J, Hallberg H, Stasolla C, Hakman I. 2010. Comparative expression pattern analysis of WUSCHEL related homeobox2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytologist 188:122−35 doi: 10.1111/j.1469-8137.2010.03336.x
CrossRef Google Scholar
|
[40]
|
Jiang F, Wei G, Sun X, Song X, Wen H, et al. 2018. Cloning and characterization of QtWOX8 gene from Ornithogalum thyrsoide. Molecular Plant Breeding 16:4600−06 doi: 10.13271/j.mpb.016.004600
CrossRef Google Scholar
|
[41]
|
Shi L, Wang K, Du L, Song Y, Li H, et al. 2021. Genome-wide identification and expression profiling analysis of WOX family protein-encoded genes in Triticeae species. International Journal of Mole cular Sciences 22:9325 doi: 10.3390/ijms22179325
CrossRef Google Scholar
|
[42]
|
Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. 2008. Differential expression of WOX genes mediates apical-Basal axis formation in the Arabidopsis embryo. Developmental Cell 14:867−76 doi: 10.1016/j.devcel.2008.03.008
CrossRef Google Scholar
|
[43]
|
Emanuelsson O, Nielsen H, Brunak S, Von Heijne G. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology 300:1005−16 doi: 10.1006/jmbi.2000.3903
CrossRef Google Scholar
|
[44]
|
Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, et al. 2006. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2:19 doi: 10.1186/1746-4811-2-19
CrossRef Google Scholar
|
[45]
|
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5:621−28 doi: 10.1038/nmeth.1226
CrossRef Google Scholar
|
[46]
|
Kenneth JL, Thomas DS. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[47]
|
Wang XD, Nolan KE, Irwanto RR, Sheahan MB, Rose RJ. 2011. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Annals of Botany 107:599−609 doi: 10.1093/aob/mcq269
CrossRef Google Scholar
|
[48]
|
Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS. 2011. De novo shoot organogenesis: from art to science. Trends in Plant Science 16:597−606 doi: 10.1016/j.tplants.2011.08.004
CrossRef Google Scholar
|
[49]
|
Dolzblasz A, Nardmann J, Clerici E, Causier B, van der Graaff E, et al. 2016. Stem cell regulation by Arabidopsis WOX genes. Molecular Plant 9:1028−39 doi: 10.1016/j.molp.2016.04.007
CrossRef Google Scholar
|
[50]
|
Chu H, Liang W, Li J, Hong F, Wu Y, et al. 2013. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. Journal of Experimental Botany 64:5359−69 doi: 10.1093/jxb/ert301
CrossRef Google Scholar
|
[51]
|
Kadri A, Grenier De March G, Guerineau F, Cosson V, Ratet P. 2021. WUSCHEL overexpression promotes callogenesis and somatic embryogenesis in Medicago truncatula Gaertn. Plants 10:715 doi: 10.3390/plants10040715
CrossRef Google Scholar
|
[52]
|
Long X, Zhang J, Wang D, Weng Y, Liu S, et al. 2023. Expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Liriodendron hybrids. Forestry Research 3:15 doi: 10.48130/FR-2023-0015
CrossRef Google Scholar
|
[53]
|
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, et al. 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811−14 doi: 10.1038/nature05703
CrossRef Google Scholar
|
[54]
|
Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, et al. 2005. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. The Plant Cell 17:3007−18 doi: 10.1105/tpc.105.035451
CrossRef Google Scholar
|
[55]
|
Dai X, Liu Z, Qiao M, Li J, Li S, et al. 2017. ARR12 promotes de novo shoot regeneration in Arabidopsis thaliana via activation of WUSCHEL expression. Journal of Integrative Plant Biology 59:747−58 doi: 10.1111/jipb.12567
CrossRef Google Scholar
|
[56]
|
Park OS, Bae SH, Kim SG, Seo PJ. 2019. JA-pretreated hypocotyl explants potentiate de novo shoot regeneration in Arabidopsis. Plant Signaling & Behavior 14:1618180 doi: 10.1080/15592324.2019.1618180
CrossRef Google Scholar
|
[57]
|
Wang J, Su Y, Kong X, Ding Z, Zhang XS. 2020. Initiation and maintenance of plant stem cells in root and shoot apical meristems. aBIOTECH 1:194−204 doi: 10.1007/s42994-020-00020-3
CrossRef Google Scholar
|
[58]
|
Liu J, Hu X, Qin P, Prasad K, Hu Y, et al. 2018. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant and Cell Physiology 59:739−48 doi: 10.1093/pcp/pcy010
CrossRef Google Scholar
|