[1]
|
Liu X, Liu Y, Huang P, Ma Y, Qing Z, et al. 2017. The genome of medicinal plant Macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism. Molecular Plant 10(7):975−89 doi: 10.1016/j.molp.2017.05.007
CrossRef Google Scholar
|
[2]
|
Huang P, Zhang Y, Xiao K, Jiang F, Wang H, et al. 2018. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome 6:211 doi: 10.1186/s40168-018-0590-5
CrossRef Google Scholar
|
[3]
|
Lin L, Liu YC, Huang JL, Liu XB, Qing ZX, et al. 2018. Medicinal plants of the genus Macleaya (Macleaya cordata, Macleaya microcarpa): a review of their phytochemistry, pharmacology, and toxicology. Phytotherapy Research: PTR 32:19−48 doi: 10.1002/ptr.5952
CrossRef Google Scholar
|
[4]
|
Tani C, Takao S. 1967. Studies on the alkaloids of fumariaceous plants. IX. alkaloids of Bocconia frutescens. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 87:699−701 doi: 10.1248/yakushi1947.87.6_699
CrossRef Google Scholar
|
[5]
|
Takao N, Yasumoto Y, Iwasa K. 1973. Studies on the alkaloids of papaveraceous plants. XV. on the alkaloids of Bocconia cordata. (2). Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 93(2):242−44 doi: 10.1248/yakushi1947.93.2_242
CrossRef Google Scholar
|
[6]
|
Qing ZX, Yang P, Yu K, Yang XY, Liu JH, et al. 2017. Mass spectrometry-guided isolation of two new dihydrobenzophenanthridine alkaloids from Macleaya cordata. Natural Product Research 31:1633−39 doi: 10.1080/14786419.2017.1285300
CrossRef Google Scholar
|
[7]
|
Qing ZX, Xu YQ, Yang P, Yu K, Cheng P, et al. 2016. Mass spectrometry-guided isolation of two new benzoquinoline alkaloids from Macleaya cordata. Natural Product Research 30(9):1030−35 doi: 10.1080/14786419.2015.1101695
CrossRef Google Scholar
|
[8]
|
Zou HL, Li HY, Liu BL, Zhou GX. 2015. A new cytotoxic benzophenanthridine isoquinoline alkaloid from the fruits of Macleaya cordata. Journal of Asian Natural Products Research 17(8):856−60 doi: 10.1080/10286020.2015.1016000
CrossRef Google Scholar
|
[9]
|
Yu K, Peng Y, Qing Z, Yang P, Zuo Z, et al. 2017. Two pairs of new dihydrobenzophenanthridine alkaloid isolated from the root of Macleaya cordata. Phytochemistry Letters 22:9−12 doi: 10.1016/j.phytol.2017.08.002
CrossRef Google Scholar
|
[10]
|
Qing Z, Yan F, Huang P, Zeng J. 2021. Establishing the metabolic network of isoquinoline alkaloids from the Macleaya genus. Phytochemistry 185:112696 doi: 10.1016/j.phytochem.2021.112696
CrossRef Google Scholar
|
[11]
|
Qing ZX, Cheng P, Liu XB, Liu YS, Zeng JG, et al. 2014. Structural speculation and identification of alkaloids in Macleaya cordata fruits by high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry combined with a screening procedure. Rapid Communications in Mass Spectrometry: RCM 28(9):1033−44 doi: 10.1002/rcm.6874
CrossRef Google Scholar
|
[12]
|
Qing ZX, Liu XB, Wu HM, Cheng P, Liu YS, et al. 2015. An improved separation method for classification of Macleaya cordata from different geographical origins. Analytical Methods 7(5):1866−71 doi: 10.1039/C4AY02600D
CrossRef Google Scholar
|
[13]
|
Qing ZX, Cheng P, Liu XB, Liu YS, Zeng JG. 2015. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. Journal of Pharmaceutical and Biomedical Analysis 103:26−34 doi: 10.1016/j.jpba.2014.11.002
CrossRef Google Scholar
|
[14]
|
Qing ZX, Yang P, Tang Q, Cheng P, Liu XB, et al. 2017. Isoquinoline alkaloids and their antiviral, antibacterial, and antifungal activities and structure-activity relationship. Current Organic Chemistry 21(18):1920−34 doi: 10.2174/1385272821666170207114214
CrossRef Google Scholar
|
[15]
|
Qing ZX, Huang JL, Yang XY, Liu JH, Cao HL, et al. 2018. Anticancer and reversing multidrug resistance activities of natural isoquinoline alkaloids and their structure-activity relationship. Current Medicinal Chemistry 25(38):5088−114 doi: 10.2174/0929867324666170920125135
CrossRef Google Scholar
|
[16]
|
Liu ZH, Wang WM, Zhang Z, Sun L, Wu SC. 2022. Natural antibacterial and antivirulence alkaloids from Macleaya cordata against methicillin-resistant Staphylococcus aureus. Frontiers in Pharmacology 13:813172 doi: 10.3389/fphar.2022.813172
CrossRef Google Scholar
|
[17]
|
Cheng P, Zeng J. 2012. Progresses in synthesis of benzophenanthridine alkaloids and their derivatives. Chinese Journal of Organic Chemistry 32(9):1605−19 doi: 10.6023/cjoc201204008
CrossRef Google Scholar
|
[18]
|
Harayama T, Akamatsu H, Okamura K, Miyagoe T, Akiyama T, et al. 2001. Synthesis of trisphaeridine and norchelerythrine through palladium-catalyzed aryl–aryl coupling reaction. Journal of the Chemical Society, Perkin Transactions 1(5):523−28 doi: 10.1039/b008683p
CrossRef Google Scholar
|
[19]
|
Vicario JL, Badı́a D, Domı́nguez E, Carrillo L. 2000. Stereocontrolled synthesis of 2-aryl tetralones. Application in the synthesis of B/C hexahydrobenzo[c]phenanthridine alkaloids. Tetrahedron: Asymmetry 11(5):1227−37 doi: 10.1016/s0957-4166(00)00042-2
CrossRef Google Scholar
|
[20]
|
Ishikawa T, Shimooka K, Narioka T, Noguchi S, Saito T, et al. 2000. Anomalous substituent effects in the bischler-napieralski reaction of 2-aryl aromatic formamides. The Journal of Organic Chemistry 65(26):9143−51 doi: 10.1021/jo0012849
CrossRef Google Scholar
|
[21]
|
Watanabe T, Ohashi Y, Yoshino R, Komano N, Eguchi M, et al. 2003. Total synthesis of 12-methoxydihydrochelerythrine and anti-tumour activity of its quaternary base: toward an efficient synthetic route for 12-alkoxybenzo[c]phenanthridine bases via naphthoquinone monooxime from 2-benzofuranyl-1-tetralone derivative. Organic & Biomolecular Chemistry 1(17):3024−32 doi: 10.1039/b304216m
CrossRef Google Scholar
|
[22]
|
Ishihara Y, Azuma S, Choshi T, Kohno K, Ono K, et al. 2011. Total synthesis of benzo[c]phenanthridine alkaloids based on a microwave-assisted electrocyclic reaction of the aza 6π-electron system and structural revision of broussonpapyrine. Tetrahedron 67(6):1320−33 doi: 10.1016/j.tet.2010.11.066
CrossRef Google Scholar
|
[23]
|
Le TN, Gang SG, Cho WJ. 2004. A versatile total synthesis of benzo[c]phenanthridine and protoberberine alkaloids using lithiated toluamide-benzonitrile cycloaddition. The Journal of Organic Chemistry 69(8):2768−72 doi: 10.1021/jo035836+
CrossRef Google Scholar
|
[24]
|
Lynch MA, Duval O, Sukhanova A, Devy J, MacKay SP, et al. 2001. Synthesis, biological activity and comparative analysis of DNA binding affinities and human DNA topoisomerase I inhibitory activities of novel 12-alkoxy-benzo[c]phenanthridinium salts. Bioorganic & Medicinal Chemistry Letters 11(19):2643−46 doi: 10.1016/s0960-894x(01)00520-0
CrossRef Google Scholar
|
[25]
|
Sai CM, Li DH, Li SG, Han T, Guo YZ, et al. 2016. Racemic alkaloids from Macleaya cordata: structural elucidation, chiral resolution, and cytotoxic, antibacterial activities. RSC Advances 6(47):41173−80 doi: 10.1039/C6RA05423D
CrossRef Google Scholar
|
[26]
|
Deng AJ, Qin HL. 2010. Cytotoxic dihydrobenzophenanthridine alkaloids from the roots of Macleaya microcarpa. Phytochemistry 71(7):816−22 doi: 10.1016/j.phytochem.2010.02.007
CrossRef Google Scholar
|
[27]
|
Wang L, Wang X, Wang W, Liu W, Liu Y, et al. 2021. Visible-light-promoted biomimetic reductive functionalization of quaternary benzophenanthridine alkaloids. Journal of Natural Products 84(8):2390−97 doi: 10.1021/acs.jnatprod.1c00512
CrossRef Google Scholar
|
[28]
|
Wang X, Wang L, Zhang J, Liu Y, Xie H, et al. 2023. Photoredox catalysed reductive aminomethylation of quaternary benzophenanthridine alkaloids. Natural Product Research 37(21):3551−55 doi: 10.1080/14786419.2022.2092732
CrossRef Google Scholar
|
[29]
|
Qing Z, Cao H, Cheng P, Wang W, Zeng J, et al. 2018. Visible light photoredox catalyzed semisynthesis of the analogues of maclekarpine E: a series of 6-vinyl substituted dihydrobenzophenanthridine alkaloids. Organic Chemistry Frontiers 5(3):353−57 doi: 10.1039/C7QO00617A
CrossRef Google Scholar
|
[30]
|
Cheng P, Wang W, Wang X, Wang L, Liu W, et al. 2022. Biomimetic synthesis of 6-substituted dihydrobenzophenanthridine alkaloids based on visible-light promoted radical addition reaction. Natural Product Research 36(1):341−47 doi: 10.1080/14786419.2020.1784171
CrossRef Google Scholar
|
[31]
|
Liu W, Zheng X, Zeng J, Cheng P. 2017. Visible light promoted C-H functionalization reactions of tertiary amines. Chinese Journal of Organic Chemistry 37(1):1−19 doi: 10.6023/cjoc201607040
CrossRef Google Scholar
|
[32]
|
Zeng J, Liu Y, Liu W, Liu X, Liu F, et al. 2013. Integration of transcriptome, proteome and metabolism data reveals the alkaloids biosynthesis in Macleaya cordata and Macleaya microcarpa. PLoS One 8:e53409 doi: 10.1371/journal.pone.0053409
CrossRef Google Scholar
|
[33]
|
Zuo Z, Zheng Y, Liang Z, Liu Y, Tang Q, et al. 2017. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry: RCM 31(5):397−410 doi: 10.1002/rcm.7804
CrossRef Google Scholar
|
[34]
|
Xu Z, Xia L, Sun M, Huang P, Zeng J. 2022. Effects of codon optimization, N-terminal truncation and gene dose on the heterologous expression of berberine bridge enzyme. World Journal of Microbiology and Biotechnology 38:77 doi: 10.1007/s11274-022-03265-w
CrossRef Google Scholar
|
[35]
|
Sun M, Zhong X, Zhou L, Xu Z, Huang P, et al. 2022. Plant–microbe hybrid synthesis provides new insights for the efficient use of Macleaya cordata. World Journal of Microbiology and Biotechnology 38(6):110 doi: 10.1007/s11274-022-03295-4
CrossRef Google Scholar
|
[36]
|
Liu T, Gou Y, Zhang B, Gao R, Dong C, et al. 2022. Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnology and Bioengineering 119(5):1314−26 doi: 10.1002/bit.28040
CrossRef Google Scholar
|
[37]
|
Gou Y, Li D, Zhao M, Li M, Zhang J, et al. 2024. Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast. Nature Communications 15:5238 doi: 10.1038/s41467-024-49554-w
CrossRef Google Scholar
|
[38]
|
Huang P, Xu M, Xia L, Qing Z, Tang Q, et al. 2017. Establishment of an efficient Agrobacterium-mediated genetic transformation method in Macleaya cordata. Scientia Horticulturae 226:302−6 doi: 10.1016/j.scienta.2017.09.004
CrossRef Google Scholar
|
[39]
|
Huang P, Liu W, Xu M, Jiang R, Xia L, et al. 2018. Modulation of benzylisoquinoline alkaloid biosynthesis by overexpression berberine bridge enzyme in Macleaya cordata. Scientific Reports 8:17988 doi: 10.1038/s41598-018-36211-8
CrossRef Google Scholar
|
[40]
|
Sun M, Liu X, Liu W, Xu Z, Wang Y, et al. 2022. The effects of protopine 6-hydroxylase (P6H) overexpression on benzylisoquinoline alkaloids in Macleaya cordata. Plant Cell, Tissue and Organ Culture 148:429−37 doi: 10.1007/s11240-021-02183-3
CrossRef Google Scholar
|
[41]
|
Huang P, Xia L, Liu W, Jiang R, Liu X, et al. 2018. Hairy root induction and benzylisoquinoline alkaloid production in Macleaya cordata. Scientific Reports 8:11986 doi: 10.1038/s41598-018-30560-0
CrossRef Google Scholar
|
[42]
|
Zheng Q, Xu Z, Sun M, Liang H, Wang Y, et al. 2021. Hairy root induction and benzylisoquinoline alkaloid production in Macleaya microcarpa. Plant Cell, Tissue and Organ Culture 147:189−96 doi: 10.1007/s11240-021-02109-z
CrossRef Google Scholar
|
[43]
|
Sun M, Zhong X, Zhou L, Liu W, Song R, et al. 2024. CRISPR/Cas9 revolutionizes Macleaya cordata breeding: a leap in sanguinarine biosynthesis. Horticulture Research 11:uhae024 doi: 10.1093/hr/uhae024
CrossRef Google Scholar
|
[44]
|
European Commission. 2014. European Union Register of Feed Additives Pursuant to Regulation (EC) No 1831/2003. Brussels, Belgium: European Commission
|
[45]
|
Liu Y, Han K, Liu H, Jia G, Comer L, et al. 2024. Macleaya cordata isoquinoline alkaloids attenuate Escherichia coli lipopolysaccharide-induced intestinal epithelium injury in broiler chickens by co-regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways. Frontiers in Immunology 14:1335359 doi: 10.3389/fimmu.2023.1335359
CrossRef Google Scholar
|
[46]
|
Drsata J, Ulrichová J, Walterová D. 1996. Sanguinarine and chelerythrine as inhibitors of aromatic amino acid decarboxylase. Journal of Enzyme Inhibition 10(4):231−37 doi: 10.3109/14756369609036530
CrossRef Google Scholar
|
[47]
|
He X, Zhang S, Yue L, Lin Q. 2015. Sanguinarine instead of tryptophan on growth and metabolism of pig under conditions of lower-protein diets. The FASEB Journal 29:742.10 doi: 10.1096/fasebj.29.1_supplement.742.10
CrossRef Google Scholar
|
[48]
|
Song H, Wang X, Zhang M, Zou Z, Yang S, et al. 2024. Dual effects of feed-additive-derived chelerythrine in combating mobile colistin resistance. Engineering 32:163−73 doi: 10.1016/j.eng.2023.06.012
CrossRef Google Scholar
|
[49]
|
Li Y, Xu F, Tong X, Chen R, Shen C, et al. 2020. Effects of Macleaya cordata extract on small intestinal morphology and gastrointestinal microbiota diversity of weaned pigs. Livestock Science 237:104040 doi: 10.1016/j.livsci.2020.104040
CrossRef Google Scholar
|
[50]
|
Chen J, Kang B, Yao K, Fu C, Zhao Y. 2019. Effects of dietary Macleaya cordata extract on growth performance, immune responses, antioxidant capacity, and intestinal development in weaned piglets. Journal of Applied Animal Research 47:349−56 doi: 10.1080/09712119.2019.1636800
CrossRef Google Scholar
|
[51]
|
Chen J, Kang B, Zhao Y, Yao K, Fu C. 2018. Effects of natural dietary supplementation with Macleaya cordata extract containing sanguinarine on growth performance and gut health of early-weaned piglets. Journal of Animal Physiology and Animal Nutrition 102(6):1666−74 doi: 10.1111/jpn.12976
CrossRef Google Scholar
|
[52]
|
Wang F, Yin Y, Yang M, Chen J, Fu C, et al. 2021. Effects of combined supplementation of Macleaya cordata extract and Benzoic acid on the growth performance, immune responses, antioxidant capacity, intestinal morphology, and microbial composition in weaned piglets. Frontiers in Veterinary Science 8:708597 doi: 10.3389/fvets.2021.708597
CrossRef Google Scholar
|
[53]
|
Matulka RA, Dohms J. 2018. Effects of the consumption of Macleaya cordata extract preparation by sows. Open Journal of Animal Sciences 8(3):294−302 doi: 10.4236/ojas.2018.83022
CrossRef Google Scholar
|
[54]
|
Li Y, Fan M, Qiu Q, Wang Y, Shen X, et al. 2022. Nano-selenium and Macleaya cordata extracts improved immune function and reduced oxidative damage of sows and IUGR piglets after heat stress of sows in late gestation. Biological Trace Element Research 200(12):5081−90 doi: 10.1007/s12011-022-03103-y
CrossRef Google Scholar
|
[55]
|
Liu ZY, Wang XL, Ou SQ, Hou DX, He JH. 2020. Sanguinarine modulate gut microbiome and intestinal morphology to enhance growth performance in broilers. PLoS ONE 15:e0234920 doi: 10.1371/journal.pone.0234920
CrossRef Google Scholar
|
[56]
|
Wang M, Zhang J, Huang X, Liu Y, Zeng J. 2022. Effects of dietary Macleaya cordata extract on growth performance, biochemical indices, and intestinal microbiota of yellow-feathered broilers subjected to chronic heat stress. Animals 12(17):2197 doi: 10.3390/ani12172197
CrossRef Google Scholar
|
[57]
|
Song B, He J, Pan X, Kong L, Xiao C, et al. 2023. Dietary Macleaya cordata extract supplementation improves the growth performance and gut health of broiler chickens with necrotic enteritis. Journal of Animal Science and Biotechnology 14:113 doi: 10.1186/s40104-023-00916-2
CrossRef Google Scholar
|
[58]
|
Aljumaah MR, Suliman GM, Abdullatif AA, Abudabos AM. 2020. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poultry Science 99(11):5744−51 doi: 10.1016/j.psj.2020.07.033
CrossRef Google Scholar
|
[59]
|
Shi Y, Liu Y, Xie K, Dai J, Wang Y, et al. 2023. Dietary sanguinarine ameliorates growth impairment and intestinal dysfunction in Ctenopharyngodon idellus fed a high cottonseed meal diet. Aquaculture 576:739864 doi: 10.1016/j.aquaculture.2023.739864
CrossRef Google Scholar
|
[60]
|
Liu YL, Zhong L, Chen T, Shi Y, Hu Y, et al. 2020. Dietary sanguinarine supplementation on the growth performance, immunity and intestinal health of grass carp (Ctenopharyngodon idellus) fed cottonseed and rapeseed meal diets. Aquaculture 528:735521 doi: 10.1016/j.aquaculture.2020.735521
CrossRef Google Scholar
|
[61]
|
Shi Y, Liu Y, Xie K, Zhang J, Wang Y, et al. 2023. Sanguinarine improves intestinal health in grass carp fed high-fat diets: involvement of antioxidant, physical and immune barrier, and intestinal microbiota. Antioxidants 12(7):1366 doi: 10.3390/antiox12071366
CrossRef Google Scholar
|
[62]
|
Chen K, Liu Y, Cheng Y, Yan Q, Zhou C, et al. 2020. Supplementation of Lactobacillus plantarum or Macleaya cordata extract alleviates oxidative damage induced by weaning in the lower gut of young goats. Animals 10(4):548 doi: 10.3390/ani10040548
CrossRef Google Scholar
|
[63]
|
Yang C, Cheng Y, Li X, Li H, Yan Q, et al. 2021. Effects of dietary Macleaya cordata extract inclusion on transcriptomes and inflammatory response in the lower gut of early weaned goats. Animal Feed Science and Technology 272:114792 doi: 10.1016/j.anifeedsci.2020.114792
CrossRef Google Scholar
|
[64]
|
Ling H, Xiao H, Zhang Z, He Y, Zhang P. 2023. Effects of Macleaya cordata extract on performance, nutrient apparent digestibilities, milk composition, and plasma metabolites of dairy goats. Animals 13(4):566 doi: 10.3390/ani13040566
CrossRef Google Scholar
|
[65]
|
Boulware R, Southard G, Yankell S. 1985. Sanguinaria extract, a new agent for the control of volatile sulfur-compounds in the oral cavity. Journal of the Society of Cosmetic Chemists 36(4):297−302
Google Scholar
|