[1]
|
Dong X, Zhao D. 2023. Ferulic acid as a therapeutic agent in depression: Evidence from preclinical studies. CNS Neuroscience & Therapeutics 29:2397−412 doi: 10.1111/cns.14265
CrossRef Google Scholar
|
[2]
|
Xiao Y, Cui J, Shi Y, Sun J, Wang Z, et al. 2010. Effects of duodenal redox status on calcium absorption and related genes expression in high-fat diet-fed mice. Nutrition (Burbank, Los Angeles County, Calif. ) 26:1188−1194 doi: 10.1016/j.nut.2009.11.021
CrossRef Google Scholar
|
[3]
|
Neish AS, Jones RM. 2014. Redox signaling mediates symbiosis between the gut microbiota and the intestine. Gut Microbes 5:250−53 doi: 10.4161/gmic.27917
CrossRef Google Scholar
|
[4]
|
Rivera-Chávez F, Lopez CA, Bäumler AJ. 2017. Oxygen as a driver of gut dysbiosis. Free Radical Biology & Medicine 105:93−101 doi: 10.1016/j.freeradbiomed.2016.09.022
CrossRef Google Scholar
|
[5]
|
Kim M, Friesen L, Park J, Kim HM, Kim CH. 2018. Microbial metabolites, short-chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice. European Journal of Immunology 48:1235−47 doi: 10.1002/eji.201747122
CrossRef Google Scholar
|
[6]
|
Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, et al. 2019. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nature Communicationsl 10:89 doi: 10.1038/s41467-018-07859-7
CrossRef Google Scholar
|
[7]
|
Safari Z, Gérard P. 2019. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences 76:1541−58 doi: 10.1007/s00018-019-03011-w
CrossRef Google Scholar
|
[8]
|
Chen JH, Zhao CL, Li YS, Yang YB, Luo JG, et al. 2023. Moutai Distiller’s grains Polyphenol extracts and rutin alleviate DSS-induced colitis in mice: Modulation of gut microbiota and intestinal barrier function (R2). Heliyon 9:e22186 doi: 10.1016/j.heliyon.2023.e22186
CrossRef Google Scholar
|
[9]
|
Kang L, Li Q, Jing Y, Ren F, Li E, et al. 2024. Auricularia auricula anionic polysaccharide nanoparticles for gastrointestinal delivery of Pinus koraiensis polyphenol used in bone protection under weightlessness. Molecules 29:245 doi: 10.3390/molecules29010245
CrossRef Google Scholar
|
[10]
|
Vaccaro A, Kaplan Dor Y, Nambara K, Pollina E, Lin C, et al. 2020. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 181:1307−1328.E15 doi: 10.1016/j.cell.2020.04.049
CrossRef Google Scholar
|
[11]
|
Qi X, Zhang Y, Wang G, Ling F. 2023. Gut redox potential affects host susceptibility to pathogen infection. Aquaculture 574:739661 doi: 10.1016/j.aquaculture.2023.739661
CrossRef Google Scholar
|
[12]
|
Chen Q, Wang P, Wang J, Xu J, Liu C, et al. 2022. Zinc Laurate Protects against Intestinal Barrier Dysfunction and Inflammation Induced by ETEC in a Mice Model. Nutrients 15:54 doi: 10.3390/nu15010054
CrossRef Google Scholar
|
[13]
|
Feng N, Xu R, Wang D, Li L, Su Y, et al. 2024. The fecal redox potential in healthy and diarrheal pigs and their correlation with microbiota. Antioxidants 13:96 doi: 10.3390/antiox13010096
CrossRef Google Scholar
|
[14]
|
Zhou HB, Huang XY, Bi Z, Hu YH, Wang FQ, et al. 2021. Vitamin A with L-ascorbic acid sodium salt improves the growth performance, immune function and antioxidant capacity of weaned pigs. Animal 15:100−33 doi: 10.1016/j.animal.2020.100133
CrossRef Google Scholar
|
[15]
|
Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, et al. 2017. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiology Ecology 93:fix127 doi: 10.1093/femsec/fix127
CrossRef Google Scholar
|
[16]
|
Chen X, Zhang J, Li R, Zhang H, Sun Y, et al. 2022. Flos Puerariae-Semen Hoveniae medicinal pair extract ameliorates DSS-induced inflammatory bowel disease through regulating MAPK signaling and modulating gut microbiota composition. Frontiers in Pharmacology 13:1034031 doi: 10.3389/fphar.2022.1034031
CrossRef Google Scholar
|
[17]
|
Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, et al. 2010. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World Journal of Gastroenterology 16:4135−44 doi: 10.3748/wjg.v16.i33.4135
CrossRef Google Scholar
|
[18]
|
Chao A, Bunge J. 2002. Estimating the number of species in a stochastic abundance model. Biometrics 58:531−39 doi: 10.1111/j.0006-341X.2002.00531.x
CrossRef Google Scholar
|
[19]
|
Hill TCJ, Walsh KA, Harris JA, Moffett BF. 2003. Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology 43:1−11 doi: 10.1111/j.1574-6941.2003.tb01040.x
CrossRef Google Scholar
|
[20]
|
Kurokawa S, Kishimoto T, Mizuno S, Masaoka T, Naganuma M, et al. 2018. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study. Journal of Affective Disorders 235:506−512 doi: 10.1016/j.jad.2018.04.038
CrossRef Google Scholar
|
[21]
|
Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, et al. 2009. Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems. Free Radical Biology & Medicine 46:624−32 doi: 10.1016/j.freeradbiomed.2008.11.020
CrossRef Google Scholar
|
[22]
|
Apak R, Özyürek M, Güçlü K, Çapanoğlu E. 2016. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. Journal of Agricultural and Food Chemistry 64:997−1027 doi: 10.1021/acs.jafc.5b04739
CrossRef Google Scholar
|
[23]
|
Siano F, Sammarco AS, Fierro O, Castaldo D, Caruso T, et al. 2023. Insights into the Structure-Capacity of Food Antioxidant Compounds Assessed Using Coulometry. Antioxidants 12:1963 doi: 10.3390/antiox12111963
CrossRef Google Scholar
|
[24]
|
Rumpf J, Burger R, Schulze M. 2023. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. International Journal of Biological Macromolecules 233:123470 doi: 10.1016/j.ijbiomac.2023.123470
CrossRef Google Scholar
|
[25]
|
Wootton-Beard P, Moran A, Ryan L. 2011. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Research International 44:217−24 doi: 10.1016/j.foodres.2010.10.033
CrossRef Google Scholar
|
[26]
|
Hor SL, Teoh SL, Lim WL. 2020. Plant polyphenols as neuroprotective agents in Parkinson's disease targeting oxidative stress. Current Drug Targets 21:458−76 doi: 10.2174/1389450120666191017120505
CrossRef Google Scholar
|
[27]
|
Pereira LD, Barbosa JMG, Ribeiro da Silva AJ, Ferri PH, Santos SC. 2017. Polyphenol and ellagitannin constituents of jabuticaba (Myrciaria cauliflora) and chemical variability at different stages of fruit development. Journal of Agricultural and Food Chemistry 65:1209−19 doi: 10.1021/acs.jafc.6b02929
CrossRef Google Scholar
|
[28]
|
Plaza M, Batista ÂG, Cazarin CBB, Sandahl MS, Turner C, et al. 2016. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: a pilot clinical study. Food Chemistry 211:185−97 doi: 10.1016/j.foodchem.2016.04.142
CrossRef Google Scholar
|
[29]
|
Rakha A, Umar N, Rabail R, Butt M, Kieliszek M, et al. 2022. Anti-inflammatory and anti-allergic potential of dietary flavonoids: a review. Biomedicine & Pharmacotherapy 156:113945 doi: 10.1016/j.biopha.2022.113945
CrossRef Google Scholar
|
[30]
|
Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, et al. 2015. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64:872−83 doi: 10.1136/gutjnl-2014-307142
CrossRef Google Scholar
|
[31]
|
Yang B, Kotani A, Arai K, Kusu F. 2001. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Analytical Sciences 17:599−604 doi: 10.2116/analsci.17.599
CrossRef Google Scholar
|
[32]
|
Hotta H, Nagano S, Ueda M, Tsujino Y, Koyama J, et al. 2002. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochimica Et Biophysica Acta 1572:123−132 doi: 10.1016/S0304-4165(02)00285-4
CrossRef Google Scholar
|
[33]
|
Miličević A. 2019. The relationship between antioxidant activity, first electrochemical oxidation potential, and spin population of flavonoid radicals. Arhiv Za Higijenu Rada I Toksikologiju 70:134−39 doi: 10.2478/aiht-2019-70-3290
CrossRef Google Scholar
|
[34]
|
Zhang N, Zhou J, Zhao L, Zhao Z, Wang S, et al. 2023. Ferulic acid supplementation alleviates hyperuricemia in high-fructose/fat diet-fed rats via promoting uric acid excretion and mediating the gut microbiota. Food & Function 14:1710−25 doi: 10.1039/d2fo03332a
CrossRef Google Scholar
|
[35]
|
Xu Y, Yang Y, Li B, Xie Y, Shi Y, et al. 2022. Dietary methionine restriction improves gut microbiota composition and prevents cognitive impairment in D-galactose-induced aging mice. Food & Function 13:12896−914 doi: 10.1039/d2fo03366f
CrossRef Google Scholar
|
[36]
|
Cheng Y, Huang Y, Liu K, Pan S, Qin Z, et al. 2021. Cardamine hupingshanensis aqueous extract improves intestinal redox status and gut microbiota in Se-deficient rats. Journal of the Science of Food and Agriculture 101:989−96 doi: 10.1002/jsfa.10707
CrossRef Google Scholar
|
[37]
|
Bell HN, Rebernick RJ, Goyert J, Singhal R, Kuljanin M, et al. 2022. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 40:185−200E6 doi: 10.1016/j.ccell.2021.12.001
CrossRef Google Scholar
|
[38]
|
Zhang J, Wang J, Ma Z, Fu Z, Zhao Y, et al. 2024. Enhanced antioxidative capacity transfer between sow and fetus via the gut-placenta axis with dietary selenium yeast and glycerol monolaurate supplementation during pregnancy. Antioxidants 13:141 doi: 10.3390/antiox13020141
CrossRef Google Scholar
|
[39]
|
Xu R, Li Q, Wang H, Su Y, Zhu W. 2023. Reduction of Redox Potential Exerts a Key Role in Modulating Gut Microbial Taxa and Function by Dietary Supplementation of Pectin in a Pig Model. Microbiology Spectrum 11:e0328322 doi: 10.1128/spectrum.03283-22
CrossRef Google Scholar
|
[40]
|
Morito K, Shimizu R, Kitamura N, Park S, Kishino S, et al. 2019. Gut microbial metabolites of linoleic acid are metabolized by accelerated peroxisomal β-oxidation in mammalian cells. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1864:1619−28 doi: 10.1016/j.bbalip.2019.07.010
CrossRef Google Scholar
|
[41]
|
Circu ML, Aw TY. 2012. Intestinal redox biology and oxidative stress. Seminars in Cell & Developmental Biology 23:729−37 doi: 10.1016/j.semcdb.2012.03.014
CrossRef Google Scholar
|
[42]
|
Xie Y, Wang L, Sun H, Wang Y, Yang Z, et al. 2019. Immunomodulatory, antioxidant and intestinal morphology-regulating activities of alfalfa polysaccharides in mice. International Journal of Biological Macromolecules 133:1107−14 doi: 10.1016/j.ijbiomac.2019.04.144
CrossRef Google Scholar
|
[43]
|
Zha A, Tan B, Wang J, Qi M, Deng Y, et al. 2023. Dietary supplementation modified attapulgite promote intestinal epithelial barrier and regulate intestinal microbiota composition to prevent diarrhea in weaned piglets. International Immunopharmacology 117:109742 doi: 10.1016/j.intimp.2023.109742
CrossRef Google Scholar
|
[44]
|
Paulino do Nascimento LC, Lacerda DC, Ferreira DJS, de Souza EL, de Brito Alves JL. 2022. Limosilactobacillus fermentum, current evidence on the antioxidant properties and opportunities to be exploited as a probiotic microorganism. Probiotics and Antimicrobial Proteins 14:960−79 doi: 10.1007/s12602-022-09943-3
CrossRef Google Scholar
|
[45]
|
Qu Q, Zhao C, Yang C, Zhou Q, Liu X, et al. 2022. Limosilactobacillus fermentum-fermented ginseng improved antibiotic-induced diarrhoea and the gut microbiota profiles of rats. Journal of Applied Microbiology 133:3476−89 doi: 10.1111/jam.15780
CrossRef Google Scholar
|
[46]
|
Sen P, Sherwin E, Sandhu K, Bastiaanssen TFS, Moloney GM, et al. 2022. The live biotherapeutic Blautia stercoris MRx0006 attenuates social deficits, repetitive behaviour, and anxiety-like behaviour in a mouse model relevant to autism. Brain, Behavior, and Immunity 106:115−26 doi: 10.1016/j.bbi.2022.08.007
CrossRef Google Scholar
|
[47]
|
Ma H, Zhang B, Hu Y, Wang J, Liu J, et al. 2019. Correlation Analysis of Intestinal Redox State with the Gut Microbiota Reveals the Positive Intervention of Tea Polyphenols on Hyperlipidemia in High Fat Diet Fed Mice. Journal of Agricultural and Food Chemistry 67:7325−35 doi: 10.1021/acs.jafc.9b02211
CrossRef Google Scholar
|