[1]
|
Thangaraj K, Cheng L, Deng C, Deng W, Zhang Z. 2019. First report of leaf blight caused by Arthrinium arundinis on tea plants in china. Plant Disease 103:3282−83 doi: 10.1094/pdis-06-19-1324-pdn
CrossRef Google Scholar
|
[2]
|
Drew L. 2019. The growth of tea. Nature 566:S2−S4 doi: 10.1038/d41586-019-00395-4
CrossRef Google Scholar
|
[3]
|
Lei X, Wang Y, Zhou Y, Chen Y, Chen H, et al. 2021. TeaPGDB: tea plant genome database. Beverage Plant Research 1:5 doi: 10.48130/bpr-2021-0005
CrossRef Google Scholar
|
[4]
|
Xia EH, Tong W, Wu Q, Wei S, Zhao J, et al. 2020. Tea plant genomics: achievements, challenges and perspectives. Horticulture Research 7:7 doi: 10.1038/s41438-019-0225-4
CrossRef Google Scholar
|
[5]
|
Zhang K, Ren T, Liao J, Wang S, Zou Z, et al. 2021. Targeted metabolomics reveals dynamic changes during the manufacturing process of Yuhua tea, a stir-fried green tea. Beverage Plant Research 1:6 doi: 10.48130/bpr-2021-0006
CrossRef Google Scholar
|
[6]
|
Jiang H, Yu F, Qin L, Zhang N, Cao Q, et al. 2019. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L. ) leaves. Journal of Food Composition and Analysis 77:28−38 doi: 10.1016/j.jfca.2019.01.005
CrossRef Google Scholar
|
[7]
|
Zhu J, He Y, Yan X, Liu L, Guo R, et al. 2019. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis). Horticulture Research 6:126 doi: 10.1038/s41438-019-0208-5
CrossRef Google Scholar
|
[8]
|
Sun J, Qiu C, Ding Y, Wang Y, Sun L, et al. 2020. Fulvic acid ameliorates drought stress-induced damage in tea plants by regulating the ascorbate metabolism and flavonoids biosynthesis. BMC Genomics 21:411 doi: 10.1186/s12864-020-06815-4
CrossRef Google Scholar
|
[9]
|
Zhang X, Wu H, Chen J, Chen L, Wan X. 2020. Chloride and amino acids are associated with K+-alleviated drought stress in tea (Camellia sinesis). Functional Plant Biology 47:398−408 doi: 10.1071/FP19221
CrossRef Google Scholar
|
[10]
|
Chen W, Zheng C, Yao M, Chen L. 2021. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Research 1:3 doi: 10.48130/bpr-2021-0003
CrossRef Google Scholar
|
[11]
|
Zhao M, Wang L, Wang J, Jin Y, Zhang N, et al. 2020. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. Journal of Integrative Plant Biology 62:1461−68 doi: 10.1111/jipb.12937
CrossRef Google Scholar
|
[12]
|
Zhao M, Zhang N, Gao T, Jin J, Jing T, et al. 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist 226:362−72 doi: 10.1111/nph.16364
CrossRef Google Scholar
|
[13]
|
Zhang C, He Q, Wang M, Gao X, Chen J, et al. 2020. Exogenous indole acetic acid alleviates Cd toxicity in tea (Camellia sinensis). Ecotoxicology and Environmental Safety 190:110090 doi: 10.1016/j.ecoenv.2019.110090
CrossRef Google Scholar
|
[14]
|
Zhao M, Cai B, Jin J, Zhang N, Jing T, et al. 2020. Cold stress-induced glucosyltransferase CsUGT78A15 is involved in the formation of eugenol glucoside in Camellia sinensis. Horticultural Plant Journal 6:439−49 doi: 10.1016/j.hpj.2020.11.005
CrossRef Google Scholar
|
[15]
|
Jing T, Zhang N, Gao T, Zhao M, Jin J, et al. 2019. Glucosylation of (Z)-3-hexenol informs intra species interactions in plants: A case study in Camellia sinensis. Plant, Cell & Environment 42:1352−67 doi: 10.1111/pce.13479
CrossRef Google Scholar
|
[16]
|
Jing T, Du W, Gao T, Wu Y, Zhang N, et al. 2021. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant, Cell & Environment 44:1178−91 doi: 10.1111/pce.13861
CrossRef Google Scholar
|
[17]
|
Jiang H, Zhang M, Qin L, Wang D, Yu F, et al. 2020. Chemical composition of a supercritical fluid (SFE-CO2) extract from Baeckea frutescens L. leaves and its bioactivity against two pathogenic fungi isolated from the tea plant (Camellia sinensis (L. ) O. Kuntze). Plants 9:1119 doi: 10.3390/plants9091119
CrossRef Google Scholar
|
[18]
|
Hu Y, Zhang M, Lu M, Wu Y, Jing T, et al. 2021. Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. Plant Physiology 188:1507−20 doi: 10.1093/plphys/kiab569
CrossRef Google Scholar
|
[19]
|
Chen Y, Wan Y, Zou L, Tong H. 2020. First report of leaf spot disease caused by Epicoccum layuense on Camellia sinensis in Chongqing, China. Plant Disease 104:2029−30 doi: 10.1094/pdis-09-19-1906-pdn
CrossRef Google Scholar
|
[20]
|
Chen Y, Zeng L, Shu N, Wang H, Tong H. 2017. First report of pestalotiopsis camelliae causing grey blight disease on Camellia sinensis in China. Plant Disease 101:1034 doi: 10.1094/pdis-01-17-0033-pdn
CrossRef Google Scholar
|
[21]
|
Chen Y, Zeng L, Shu N, Jiang M, Wang H, et al. 2018. Pestalotiopsis-like species causing gray blight disease on Camellia sinensis in China. Plant Disease 102:98−106 doi: 10.1094/PDIS-05-17-0642-RE
CrossRef Google Scholar
|
[22]
|
Guo M, Pan Y, Dai Y, Gao Z. 2014. First report of brown blight disease caused by Colletotrichum gloeosporioides on Camellia sinensis in Anhui province, China. Plant Disease 98:284 doi: 10.1094/PDIS-08-13-0896-PDN
CrossRef Google Scholar
|
[23]
|
Lin SR, Yu SY, Chang TD, Lin YJ, Wen CJ, et al. 2021. First report of anthracnose caused by Colletotrichum fructicola on tea in Taiwan. Plant Disease 105:710 doi: 10.1094/PDIS-06-20-1288-PDN
CrossRef Google Scholar
|
[24]
|
Chen Y, Tong H, Wei X, Yuan L. 2016. First report of brown blight disease on Camellia sinensis caused by Colletotrichum acutatum in China. Plant Disease 100:227 doi: 10.1094/pdis-07-15-0762-pdn
CrossRef Google Scholar
|
[25]
|
Yin Q, An X, Wu X, Dharmasena DSP, Li D, et al. 2021. First report of Alternaria longipes causing leaf spot on tea in China. Plant Disease 105:4167 doi: 10.1094/PDIS-07-20-1583-PDN
CrossRef Google Scholar
|
[26]
|
Yin Q, Jiang S, Li D, Huang H, Wang Y, et al. 2021. First report of Epicoccum nigrum causing brown leaf spot in tea in Guizhou province, China. Plant Disease 106:321 doi: 10.1094/PDIS-04-21-0815-PDN
CrossRef Google Scholar
|
[27]
|
Hernández-Restrepo M, Bezerra JDP, Tan YP, Wiederhold N, Crous PW, et al. 2019. Re-evaluation of Mycoleptodiscus species and morphologically similar fungi. Persoonia 42:205−27 doi: 10.3767/persoonia.2019.42.08
CrossRef Google Scholar
|
[28]
|
Nakashima KI, Tomida J, Tsuboi T, Kawamura Y, Inoue M. 2020. Muyocopronones A and B: azaphilones from the endophytic fungus Muyocopron laterale. Beilstein Journal of Organic Chemistry 16:2100−107 doi: 10.3762/bjoc.16.177
CrossRef Google Scholar
|