[1]
|
Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis. 3rd Edition. New York: Academic Press. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6
|
[2]
|
Johnson NC, Angelard C, Sanders IR, Kiers ET. 2013. Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol. Lett. 16:140−53 doi: 10.1111/ele.12085
CrossRef Google Scholar
|
[3]
|
Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA. 2015. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 20:283−90 doi: 10.1016/j.tplants.2015.03.004
CrossRef Google Scholar
|
[4]
|
Zhu X, Song F, Liu S, Liu F. 2016. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza 26:133−40 doi: 10.1007/s00572-015-0654-3
CrossRef Google Scholar
|
[5]
|
Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. 2018. Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front. Plant Sci. 9:1270 doi: 10.3389/fpls.2018.01270
CrossRef Google Scholar
|
[6]
|
Bowles TM, Jackson LE, Loeher M, Cavagnaro TR. 2016. Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 54:1785−93 doi: 10.1111/1365-2664.12815
CrossRef Google Scholar
|
[7]
|
Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, et al. 2017. Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:639−57 doi: 10.1007/s00572-017-0784-x
CrossRef Google Scholar
|
[8]
|
Pirzad A, Mohammadzadeh S. 2018. Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris). Agric. Water Manage. 204:1−10 doi: 10.1016/j.agwat.2018.03.020
CrossRef Google Scholar
|
[9]
|
Seguel A, Cumming JR, Klugh-Stewart K, Cornejo P, Borie F. 2013. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23:167−83 doi: 10.1007/s00572-013-0479-x
CrossRef Google Scholar
|
[10]
|
Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 123:4−15 doi: 10.1016/j.phytochem.2016.01.002
CrossRef Google Scholar
|
[11]
|
Singh SP, Singh MK. 2019. Mycorrhiza in Sustainable Crop Production. In Agronomic Crops, ed. Hasanuzzaman M. Singapore: Springer Nature Singapore Pte Ltd. pp. 461−83 https://doi.org/10.1007/978-981-32-9783-8_22
|
[12]
|
Rinaudo V, Bàrberi P, Giovannetti M, van der Heijden MGA. 2010. Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333:7−20 doi: 10.1007/s11104-009-0202-z
CrossRef Google Scholar
|
[13]
|
Veiga RSL, Jansa J, Frossard E, van der Heijden MGA. 2011. Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS ONE 6(12):e27825 doi: 10.1371/journal.pone.0027825
CrossRef Google Scholar
|
[14]
|
Daisog H, Sbrana C, Cristani C, Moonen AC, Giovannetti M, et al. 2012. Arbuscular mycorrhizal fungi shift competitive relationships among crop and weed species. Plant Soil 353:395−408 doi: 10.1007/s11104-011-1040-3
CrossRef Google Scholar
|
[15]
|
Qiao X, Bei S, Li H, Christie P, Zhang F, et al. 2016. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant Soil 406:173−85 doi: 10.1007/s11104-016-2863-8
CrossRef Google Scholar
|
[16]
|
Johnson N, Gehring C, Jansa J. 2017. Mycorrhizal mediation of soil. Amsterdam: Elsevier. https://doi.org/10.1016/C2015-0-01928-1
|
[17]
|
Verbruggen E, Jansa J, Hammer EC, Rillig MC. 2016. Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J. Ecol. 104:261−69 doi: 10.1111/1365-2745.12496
CrossRef Google Scholar
|
[18]
|
Rillig MC, Mummey DL. 2006. Mycorrhizas and soil structure. New Phytol. 171:41−53 doi: 10.1111/j.1469-8137.2006.01750.x
CrossRef Google Scholar
|
[19]
|
Zhang S, Yu J, Wang S, Singh RP, Fu D. 2019. Nitrogen fertilization altered arbuscular mycorrhizal fungi abundance and soil erosion of paddy fields in the Taihu Lake region of China. Environ. Sci. Pollut. Res. 26:27987−98 doi: 10.1007/s11356-019-06005-0
CrossRef Google Scholar
|
[20]
|
Köhl L, van der Heijden MGA. 2016. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol. Biochem. 94:191−9 doi: 10.1016/j.soilbio.2015.11.019
CrossRef Google Scholar
|
[21]
|
Machado AAS, Valyi K, Rillig MC. 2017. Potential environmental impacts of an “Underground Revolution”: A response to Bender et al. Trends Ecol. Evol. 32:8−10 doi: 10.1016/j.tree.2016.10.009
CrossRef Google Scholar
|
[22]
|
Storer K, Coggan A, Ineson P, Hodge A. 2018. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol. 220:1285−95 doi: 10.1111/nph.14931
CrossRef Google Scholar
|
[23]
|
Maffei G, Miozzi L, Fiorilli V, Novero M, Lanfranco L, et al. 2014. The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24:179−86 doi: 10.1007/s00572-013-0527-6
CrossRef Google Scholar
|
[24]
|
Mora-Romero GA, Cervantes-Gámez RG, Galindo-Flores H, González-Ortíz MA, Félix-Gastélum R, et al. 2015. Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 66:55−64 doi: 10.1007/s13199-015-0334-2
CrossRef Google Scholar
|
[25]
|
Nair A, Kolet SP, Thulasiram HV, Bhargava S. 2015. Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biol. 17:625−31 doi: 10.1111/plb.12277
CrossRef Google Scholar
|
[26]
|
Ren L, Zhang N, Wu P, Huo H, Xu G, et al. 2015. Arbuscular mycorrhizal colonization alleviates Fusarium wilt in watermelon and modulates the composition of root exudates. Plant Growth Regul. 77:77−85 doi: 10.1007/s10725-015-0038-x
CrossRef Google Scholar
|
[27]
|
Song Y, Chen D, Lu K, Sun Z, Zeng R. 2015. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 6:786 doi: 10.3389/fpls.2015.00786
CrossRef Google Scholar
|
[28]
|
Saia S, Tamayo E, Schillaci C, De Vita P. 2020. Arbuscular mycorrhizal fungi and nutrient cycling in cropping systems. In Carbon and Nitrogen Cycling in Soil, eds. Datta R, Meena RS, Pathan SI, Ceccherini MT, Singapore: Springer Nature Singapore Pte Ltd. pp. 87−115 https://doi.org/10.1007/978-981-13-7264-3
|
[29]
|
Sikes BA, Cottenie K, Klironomos JN. 2009. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J. Ecol. 97:1274−80 doi: 10.1111/j.1365-2745.2009.01557.x
CrossRef Google Scholar
|
[30]
|
Shrivastava G, Ownley BH, Auge RM, Toler H, Dee M, et al. 2015. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65−74 doi: 10.1007/s13199-015-0319-1
CrossRef Google Scholar
|
[31]
|
Selvaraj A, Thangavel K. 2021. Arbuscular Mycorrhizal Fungi: Potential Plant Protective Agent Against Herbivorous Insect and Its Importance in Sustainable Agriculture. In Symbiotic Soil Microorganisms, eds. Shrivastava N, Mahajan S, Varma A. Soil Biology, 60:vii, 489. Switzerland: Springer, Cham. pp. 319−37 https://doi.org/10.1007/978-3-030-51916-2_19
|
[32]
|
McGonigle TP. 1988. A numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi. Funct. Ecol. 2:473−8 doi: 10.2307/2389390
CrossRef Google Scholar
|
[33]
|
Lekberg Y, Koide RT. 2005. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol. 168:189−204 doi: 10.1111/j.1469-8137.2005.01490.x
CrossRef Google Scholar
|
[34]
|
Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, et al. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13:394−407 doi: 10.1111/j.1461-0248.2009.01430.x
CrossRef Google Scholar
|
[35]
|
Larimer AL, Bever JD, Clay K. 2020. The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51:139−48 doi: 10.1007/s13199-010-0083-1
CrossRef Google Scholar
|
[36]
|
Lehmann A, Barto K, Powell JR, Rillig MC. 2012. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives − a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231−50 doi: 10.1007/s11104-011-1095-1
CrossRef Google Scholar
|
[37]
|
Pellegrino E, Öpik M, Bonari E, Ercoli L. 2015. Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biol. Biochem. 84:210−7 doi: 10.1016/j.soilbio.2015.02.020
CrossRef Google Scholar
|
[38]
|
Alvarez R, Steinbach HS, De Paepe JL. 2017. Cover crop effects on soils and subsequent crops in the pampas: A meta-analysis. Soil Tillage Res. 170:53−65 doi: 10.1016/j.still.2017.03.005
CrossRef Google Scholar
|
[39]
|
Martín-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, et al. 2018. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 322−34 doi: 10.1111/nph.14962
CrossRef Google Scholar
|
[40]
|
Hallama M, Pekrun C, Lambers H, Kandeler E. 2019. Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant Soil 434:7−45 doi: 10.1007/s11104-018-3810-7
CrossRef Google Scholar
|
[41]
|
Zhang S, Lehmann A, Zheng W, You Z, Rillig MC. 2019. Arbuscular mycorrhizal fungi increase grain yields: A meta-analysis. New Phytol. 222:543−55 doi: 10.1111/nph.15570
CrossRef Google Scholar
|
[42]
|
Ryan MH, Graham JH. 2018. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 220:1092−107 doi: 10.1111/nph.15308
CrossRef Google Scholar
|
[43]
|
Rillig MC, Aguilar-Trigueros CA, Camenzind T, Cavagnaro TR, Degrune F, et al. 2019. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 222:1171−5 doi: 10.1111/nph.15602
CrossRef Google Scholar
|
[44]
|
Frew A. 2019. Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C3 and C4 crop plants. Soil Biol. Biochem. 135:248−50 doi: 10.1016/j.soilbio.2019.05.015
CrossRef Google Scholar
|
[45]
|
Chandrasekara A, Kumar TJ. 2016. Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. Int. J. Food Sci. 2016:3631647 doi: 10.1155/2016/3631647
CrossRef Google Scholar
|
[46]
|
Chaudhary VB, Rúa MA, Antoninka A, Bever JD, Cannon J, et al. 2016. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3:160028 doi: 10.1038/sdata.2016.28
CrossRef Google Scholar
|
[47]
|
Van Geel M, De Beenhouwer M, Lievens B, Honnay O. 2016. Crop-specific and single-species mycorrhizal inoculation is the best approach to improve crop growth in controlled environments. Agron. Sustain. Dev. 36:37 doi: 10.1007/s13593-016-0373-y
CrossRef Google Scholar
|
[48]
|
Benami M, Isack Y, Grotsky D, Levy D, Kofman Y. 2020. The economic potential of arbuscular mycorrhizal fungi in agriculture. In Grand Challenges in Fungal Biotechnology, eds. Nevalainen H. Switzerland: Springer, Cham. pp. 239−79 https://doi.org/10.1007/978-3-030-29541-7_9
|
[49]
|
Njeru EM, Avio L, Sbrana C, Turrini A, Bocci G, et al. 2014. First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agron. Sustain. Dev. 34:841−8 doi: 10.1007/s13593-013-0197-y
CrossRef Google Scholar
|
[50]
|
Bender SF, Wagg C, van der Heijden MGA. 2016. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31:440−52 doi: 10.1016/j.tree.2016.02.016
CrossRef Google Scholar
|
[51]
|
Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T. 2017. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Sci. 264:48−56 doi: 10.1016/j.plantsci.2017.08.004
CrossRef Google Scholar
|
[52]
|
de León DG, Cantero JJ, Moora M, Öpik M, Davison J, et al. 2018. Soybean cultivation supports a diverse arbuscular mycorrhizal fungal community in central Argentina. Appl. Soil Ecol. 124:289−97 doi: 10.1016/j.apsoil.2017.11.020
CrossRef Google Scholar
|
[53]
|
Porter SS, Sachs JL. 2020. Agriculture and the disruption of plant–microbial symbiosis. Trends Ecol. Evol. 35:426−39 doi: 10.1016/j.tree.2020.01.006
CrossRef Google Scholar
|
[54]
|
Mortimer PE, Pérez-Fernández MA, Valentine AJ. 2008. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol. Biochem. 40:1019−27 doi: 10.1016/j.soilbio.2007.11.014
CrossRef Google Scholar
|
[55]
|
Mortimer PE, Pérez-Fernández MA, Valentine AJ. 2009. Arbuscular mycorrhizae affect the N and C economy of nodulated Phaseolus vulgaris (L.) during NH4+ nutrition. Soil Biol. Biochem. 41:2115−21 doi: 10.1016/j.soilbio.2009.07.021
CrossRef Google Scholar
|
[56]
|
Rosner K, Bodner G, Hage-Ahmed K, Steinkellner S. 2018. Long-term soil tillage and cover cropping affected arbuscular mycorrhizal fungi, nutrient concentrations, and yield in sunflower. Agron. J. 110:2664−72 doi: 10.2134/agronj2018.03.0177
CrossRef Google Scholar
|
[57]
|
García-González I, Quemada M, Gabriel JL, Alonso-Ayuso M, Hontoria C. 2018. Legacy of eight-year cover cropping on mycorrhizae, soil, and plants. J. Plant Nutr. Soil Sci. 181:818−26 doi: 10.1002/jpln.201700591
CrossRef Google Scholar
|
[58]
|
Elliott AJ, Daniell TJ, Cameron DD, Field KJ. 2020. A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients. Plants, People, Planet 00:1−12 doi: 10.1002/ppp3.10094
CrossRef Google Scholar
|
[59]
|
Higo M, Tatewaki Y, Iida K, Yokota K, Isobe K. 2020. Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Sci. Rep. 10:6039 doi: 10.1038/s41598-020-58942-3
CrossRef Google Scholar
|
[60]
|
Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. 1998. Ploughing up the wood-wide web? Nature 394:431 doi: 10.1038/28764
CrossRef Google Scholar
|
[61]
|
Kabir Z. 2005. Tillage or no-tillage: Impact on mycorrhizae. Can. J. Plant Sci. 85:23−9 doi: 10.4141/P03-160
CrossRef Google Scholar
|
[62]
|
Sosa-Hernández MA, Leifheit EF, Ingraffia R, Rillig MC. 2019. Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: A solution right under our feet? Front. Microbiol. 10:744 doi: 10.3389/fmicb.2019.00744
CrossRef Google Scholar
|
[63]
|
de la Cruz-Ortiz ÁV, Álvarez-Lopeztello J, Robles C, Hernández-Cuevas LV. 2020. Tillage intensity reduces the arbuscular mycorrhizal fungi attributes associated with Solanum lycopersicum, in the Tehuantepec Isthmus (Oaxaca) Mexico. Appl. Soil Ecol. 149:103519 doi: 10.1016/j.apsoil.2020.103519
CrossRef Google Scholar
|
[64]
|
Gu S, Wu S, Guan Y, Zhai C, Zhang Z, et al. 2020. Arbuscular mycorrhizal fungal community was affected by tillage practices rather than residue management in black soil of northeast China. Soil Tillage Res. 198:104552 doi: 10.1016/j.still.2019.104552
CrossRef Google Scholar
|
[65]
|
Säle V, Aguilera P, Laczko E, Mäder P, Berner A, et al. 2015. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 84:38−52 doi: 10.1016/j.soilbio.2015.02.005
CrossRef Google Scholar
|
[66]
|
Wilkes TI, Warner DJ, Davies KG, Edmonds-Brown V. 2020. Tillage, glyphosate and beneficial arbuscular mycorrhizal fungi: Optimising crop management for plant–fungal symbiosis. Agriculture 10:520 doi: 10.3390/agriculture10110520
CrossRef Google Scholar
|
[67]
|
Pingali P. 2012. Green revolution: impacts, limits, and the path ahead. PNAS 109:12302−8 doi: 10.1073/pnas.0912953109
CrossRef Google Scholar
|
[68]
|
Treseder KK. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164:347−55 doi: 10.1111/j.1469-8137.2004.01159.x
CrossRef Google Scholar
|
[69]
|
Gosling P, Hodge A, Goodlass G, Bending GD. 2006. Arbuscular mycorrhizal fungi and organic farming. Agric. Ecosys. Environ. 113:17−35 doi: 10.1016/j.agee.2005.09.009
CrossRef Google Scholar
|
[70]
|
Robertson GP, Vitousek PM. 2009. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34:97−125 doi: 10.1146/annurev.environ.032108.105046
CrossRef Google Scholar
|
[71]
|
Crossay T, Majorel C, Redecker D, Gensous S, Medevielle V, et al. 2019. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza 29:325−39 doi: 10.1007/s00572-019-00898-y
CrossRef Google Scholar
|
[72]
|
Hart MM, Antunes PM, Chaudhary VB, Abbott LK. 2018. Fungal inoculants in the field: Is the reward greater than the risk? Funct. Ecol. 32:126−35 doi: 10.1111/1365-2435.12976
CrossRef Google Scholar
|
[73]
|
Vestberg M, Kahiluoto H, Wallius E. 2011. Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351−61 doi: 10.1007/s00572-010-0346-y
CrossRef Google Scholar
|
[74]
|
Oruru MB, Njeru EM. 2016. Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. BioMed Res. Int. 2016:4376240 doi: 10.1155/2016/4376240
CrossRef Google Scholar
|
[75]
|
Rocha I, Duarte I, Ma Y, Souza-Alonso P, Látr A, et al. 2019. Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea. Agronomy 9:471 doi: 10.3390/agronomy9080471
CrossRef Google Scholar
|
[76]
|
Verbruggen E, Kiers ET. 2010. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol. Applic. 3:547−60 doi: 10.1111/j.1752-4571.2010.00145.x
CrossRef Google Scholar
|
[77]
|
Rodriguez A, Sanders IR. 2015. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 9:1053−61 doi: 10.1038/ismej.2014.207
CrossRef Google Scholar
|
[78]
|
Rothman DH. 2002. Atmospheric carbon dioxide levels for the last 500 million years. PNAS 99:4167−71 doi: 10.1073/pnas.022055499
CrossRef Google Scholar
|
[79]
|
Werner GDA, Zhou Y, Pieterse CMJ, Kiers ET. 2018. Tracking plant preference for higher-quality mycorrhizal symbionts under varying CO2 conditions over multiple generations. Ecol. Evol. 8:78−87 doi: 10.1002/ece3.3635
CrossRef Google Scholar
|
[80]
|
Thirkell TJ, Campbell M, Driver J, Pastok D, Merry B, et al. 2020a. Cultivar-dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2. Plants, People, Planet 00:1−14 doi: 10.1002/ppp3.10174
CrossRef Google Scholar
|
[81]
|
Thirkell TJ, Pastok D, Field KJ. 2020. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob. Chang. Biol. 26:1725−38 doi: 10.1111/gcb.14851
CrossRef Google Scholar
|
[82]
|
Alberton O, Kuyper TW, Gorissen A. 2005. Taking mycocentrism seriously: Mycorrhizal fungal and plant responses to elevated CO2. New Phytol. 167:859−68 doi: 10.1111/j.1469-8137.2005.01458.x
CrossRef Google Scholar
|
[83]
|
Houlton BZ, Almaraz M, Aneja V, Austin AT, Bai E, et al. 2019. A world of cobenefits: Solving the global nitrogen challenge. Earth's Future 7:865−72 doi: 10.1029/2019EF001222
CrossRef Google Scholar
|