[1]
|
Adetunji AI, Olaniran AO. 2021. Production strategies and biotechnological relevance of microbial lipases: a review. Brazilian Journal of Microbiology 52:1257−69 doi: 10.1007/s42770-021-00503-5
CrossRef Google Scholar
|
[2]
|
Gurung N, Ray S, Bose S, Rai V. 2013. A broader view: microbial enzymes and their relevance in industries medicine and beyond. Biomed Research International 2013:329121 doi: 10.1155/2013/329121
CrossRef Google Scholar
|
[3]
|
Adetunji AI, Olaniran AO. 2023. Biocatalytic profiling of free and immobilized partially purified alkaline protease from an autochthonous Bacillus aryabhattai Ab15-ES. Reactions 4:231−45 doi: 10.3390/reactions4020013
CrossRef Google Scholar
|
[4]
|
Singh R, Kumar M, Mittal A, Mehta PK. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174 doi: 10.1007/s13205-016-0485-8
CrossRef Google Scholar
|
[5]
|
Prakash D, Nawani N, Prakash M, Bodas M, Mandal A, et al. 2013. Actinomycetes: a repertory of green catalysts with a potential revenue resource. BioMed Research International 2013:264020 doi: 10.1155/2013/264020
CrossRef Google Scholar
|
[6]
|
Kieliszek M, Pobiega K, Piwowarek K, Kot AM. 2021. Characteristics of the proteolytic enzymes produced by lactic acid bacteria. Molecules 26(7):1858 doi: 10.3390/molecules26071858
CrossRef Google Scholar
|
[7]
|
Shankar S, Rao M, Laxman RS. 2011. Purification and characterization of an alkaline protease by a new strain of Beauveria sp. Process Biochemistry 46:579−85 doi: 10.1016/j.procbio.2010.10.013
CrossRef Google Scholar
|
[8]
|
Ibrahim ASS, Al-Salamah AA, El-Badawi YB, El-Tayeb MA, Antranikian G. 2015. Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization. Extremophiles 19:961−71 doi: 10.1007/s00792-015-0771-0
CrossRef Google Scholar
|
[9]
|
Singh S, Bajaj BK. 2017. Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecology and Environment 2:370−86 doi: 10.1007/s40974-017-0076-5
CrossRef Google Scholar
|
[10]
|
Matkawala F, Nighojkar S, Kumar A, Nighojkar A. 2021. Microbial alkaline serine proteases: production, properties and applications. World Journal of Microbiology and Biotechnology 37:63 doi: 10.1007/s11274-021-03036-z
CrossRef Google Scholar
|
[11]
|
Singhal P, Nigam VK, Vidyarthi AS. 2012. Studies on production, characterization and applications of microbial alkaline proteases. International Journal Advanced Biotechnology and Research 3:653−69
Google Scholar
|
[12]
|
Sawant R, Nagendran S. 2014. Protease: an enzyme with multiple industrial applications. World Journal of Pharmacy and Pharmaceutical Sciences 3:568−79
Google Scholar
|
[13]
|
De Souza PM, Bittencourt MLA, Caprara CC, de Freitas M, de Almeida RPC, et al. 2015. A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology 46:337−46 doi: 10.1590/S1517-838246220140359
CrossRef Google Scholar
|
[14]
|
Goda DA, Bassiouny AR, Abdel Monem NM, Soliman NA, Abdel Fattah YR. 2020. Effective multi-functional biotechnological applications of protease/keratinase enzyme produced by new Egyptian isolate (Laceyella sacchari YNDH). Journal of Genetic Engineering and Biotechnology 18:23 doi: 10.1186/s43141-020-00037-7
CrossRef Google Scholar
|
[15]
|
Milošević J, Vrhovac L, Đurković F, Janković B, Malkov S, et al. 2020. Isolation, identification, and stability of ficin 1c isoform from fig latex. New Journal of Chemistry 44:15716−23 doi: 10.1039/d0nj02938f
CrossRef Google Scholar
|
[16]
|
Romero-Garay MG, Martínez-Montaño E, Hernández-Mendoza A, Vallejo-Cordoba B, González-Córdova AF, et al. 2020. Bromelia karatas and Bromelia pinguin: sources of plant proteases used for obtaining antioxidant hydrolysates from chicken and fish by-products. Applied Biological Chemistry 63:41 doi: 10.1186/s13765-020-00525-x
CrossRef Google Scholar
|
[17]
|
Shouket HA, Ameen I, Tursunov O, Kholikova K, Pirimov O, et al. 2020. Study on industrial applications of papain: a succinct review. IOP Conference Series: Earth Environmental Science 614:012171 doi: 10.1088/1755-1315/614/1/012171
CrossRef Google Scholar
|
[18]
|
Van der Hoorn RAL, Klemenčič M. 2021. Plant proteases: from molecular mechanisms to functions in development and immunity. Journal of Experimental Botany 72(9):3337−39 doi: 10.1093/jxb/erab129
CrossRef Google Scholar
|
[19]
|
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62:597−635 doi: 10.1128/MMBR.62.3.597-635.1998
CrossRef Google Scholar
|
[20]
|
González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MDC. 2011. Production of plant proteases in vivo and in vitro- a review. Biotechnology Advances 29:983−96 doi: 10.1016/j.biotechadv.2011.08.017
CrossRef Google Scholar
|
[21]
|
Singh S, Singh A, Kumar S, Mittal P, Singh IK. 2020. Protease inhibitors: recent advancement in its usage as a potential biocontrol agent for insect pest management. Insect Science 27(2):186−201 doi: 10.1111/1744-7917.12641
CrossRef Google Scholar
|
[22]
|
Fu Z, Akula S, Thorpe M, Hellman L. 2021. Marked difference in efficiency of the digestive enzymes pepsin, trypsin, chymotrypsin, and pancreatic elastase to cleave tightly folded proteins. Biological Chemistry 402(7):861−67 doi: 10.1515/hsz-2020-0386
CrossRef Google Scholar
|
[23]
|
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Silano V, Baviera JMB, Bolognesi C, et al. 2021. Safety evaluation of a food enzyme containing trypsin and chymotrypsin from porcine pancreas. EFSA Journal 19(1):e06369 doi: 10.2903/j.efsa.2021.6369
CrossRef Google Scholar
|
[24]
|
Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 59:15−32 doi: 10.1007/s00253-002-0975-y
CrossRef Google Scholar
|
[25]
|
Haddar A, Bougatef A, Agrebi R, Sellami-Kamoun A, Nasri M. 2009. A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21: purification and characterization. Process Biochemistry 44:29−35 doi: 10.1016/j.procbio.2008.09.003
CrossRef Google Scholar
|
[26]
|
Raval VH, Pillai S, Rawal CM, Singh SP. 2014. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochemistry 49:955−962 doi: 10.1016/j.procbio.2014.03.014
CrossRef Google Scholar
|
[27]
|
Kumar CG, Takagi H. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances 17:561−594 doi: 10.1016/S0734-9750(99)00027-0
CrossRef Google Scholar
|
[28]
|
Jisha VN, Smitha RB, Pradeep S, Sreedevi S, Unni KN, et al. 2013. Versatility of microbial proteases. Advances in Enzyme Research 1:39−51 doi: 10.4236/aer.2013.13005
CrossRef Google Scholar
|
[29]
|
Rieger TJ, de Oliveira CT, Pereira JQ, Brandelli PA, Daroit DJ. 2017. Proteolytic system of Bacillus sp. CL18 is capable of extensive feather degradation and hydrolysis of diverse protein substrates. British Poultry Science 58:329−35 doi: 10.1080/00071668.2017.1293229
CrossRef Google Scholar
|
[30]
|
Adetunji AI, Olaniran AO. 2020. Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: a response surface methodology approach. Biocatalysis and Agricultural Biotechnology 24:101528 doi: 10.1016/j.bcab.2020.101528
CrossRef Google Scholar
|
[31]
|
Karray A, Alonazi M, Horchani H, Ben Bacha A. 2021. A novel thermostable and alkaline protease produced from Bacillus stearothermophilus isolated from olive oil mill sols suitable to industrial biotechnology. Molecules 26:1139 doi: 10.3390/molecules26041139
CrossRef Google Scholar
|
[32]
|
Mushtaq H, Jehangir A, Ganai SA, Farooq S, Ganai BA, et al. 2021. Biochemical characterization and functional analysis of heat stable high potential protease of Bacillus amyloliquefaciens strain HM48 from soils of Dachigam national park in Kashmir Himalaya. Biomolecules 11:117 doi: 10.3390/biom11010117
CrossRef Google Scholar
|
[33]
|
Thebti W, Riahi Y, Belhadj O. 2016. Purification and characterization of a new thermostable, haloalkaline, solvent stable, and detergent compatible serine protease from Geobacillus toebii strain LBT 77. Biomed Research International 2016:9178962 doi: 10.1155/2016/9178962
CrossRef Google Scholar
|
[34]
|
Zhang S, Li H, Uluko H, Liu L, Pang X, et al. 2015. Investigation of protease production by Pseudomonas fluorescens BJ-10 and degradation on milk proteins. Journal of Food Processing and Preservation 39:2466−72 doi: 10.1111/jfpp.12496
CrossRef Google Scholar
|
[35]
|
Silva GMM, Bezerra RP, Teixeira JA, Porto TS, Lima-Filho JL, et al. 2015. Fibrinolytic protease production by new Streptomyces sp. DPUA 1576 from Amazon lichens. Electronic Journal of Biotechnology 18:16−19 doi: 10.1016/j.ejbt.2014.11.001
CrossRef Google Scholar
|
[36]
|
Mizuno T, Nanko A, Maehara Y, Shinoda S, Miyoshi SI. 2014. A novel extracellular protease of Vibrio mimicus that mediates maturation of an endogenous hemolysin. Microbiology and Immunology 58:503−12 doi: 10.1111/1348-0421.12177
CrossRef Google Scholar
|
[37]
|
Beganović J, Kos B, Pavunc AL, Uroić K, Džidara P, et al. 2013. Proteolytic activity of probiotic strain Lactobacillus helveticus M92. Anaerobe 20:58−64 doi: 10.1016/j.anaerobe.2013.02.004
CrossRef Google Scholar
|
[38]
|
Lü J, Wu X, Jiang Y, Cai X, Huang L, et al. 2014. An extremophile Microbacterium strain and its protease production under alkaline conditions. Journal of Basic Microbiology 54:378−85 doi: 10.1002/jobm.201200553
CrossRef Google Scholar
|
[39]
|
Bhargavi PL, Prakasham RS. 2016. Enhanced fibrinolytic protease production by Serratia marcescens RSPB11 through Plackett-Burman and response surface methodological approaches. Journal of Applied Biology and Biotechnology 4:6−14 doi: 10.7324/jabb.2016.40302
CrossRef Google Scholar
|
[40]
|
Shumi W, Hossain MDT, Anwar MN. 2004. Production of protease from Listeria monocytogenes. International Journal of Agriculture and Biology 6:1097−100
Google Scholar
|
[41]
|
Rattray FP, Bockelmann W, Fox PF. 1995. Purification and characterization of an extracellular proteinase from Brevibacterium linens ATCC 9174. Applied Environmental Microbiology 61:3454−56 doi: 10.1128/aem.61.9.3454-3456.1995
CrossRef Google Scholar
|
[42]
|
Yeo IO, Choi SH, Lee JS, Kim CJ. 1995. Characteristics of an alkaline protease from Alteromonas sp. Agricultural Chemistry and Biotechnology 38:106−10
Google Scholar
|
[43]
|
Santos AF, Valle RS, Pacheco CA, Alvarez VM, Seldin L, et al. 2013. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium. Brazilian Journal of Microbiology 44:1299−304 doi: 10.1590/S1517-83822014005000015
CrossRef Google Scholar
|
[44]
|
Vandecandelaere I, Depuydt P, Nelis HJ, Coenye T. 2014. Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms. Pathogens and Disease 70:321−31 doi: 10.1111/2049-632X.12133
CrossRef Google Scholar
|
[45]
|
Secades P, Guijarro JA. 1999. Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Applied Environmental Microbiology 65:3969−75 doi: 10.1128/AEM.65.9.3969-3975.1999
CrossRef Google Scholar
|
[46]
|
Chang C, Gong S, Liu Z, Yan Q, Jiang Z. 2021. High level expression and biochemical characterization of an alkaline serine protease from Geobacillus stearothermophilus to prepare antihypertensive whey protein hydrolysate. BMC Biotechnology 21:21 doi: 10.1186/s12896-021-00678-7
CrossRef Google Scholar
|
[47]
|
Saba I, Qazi PH, Rather SA, Dar RA, Qadri QA, et al. 2012. Purification and characterization of a cold active alkaline protease from Stenotrophomonas sp., isolated from Kashmir, India. World Journal of Microbiology and Biotechnology 28:1071−79 doi: 10.1007/s11274-011-0905-1
CrossRef Google Scholar
|
[48]
|
Manni L, Misbah A, Zouine N, Ananou S. 2020. Biochemical characterization of a novel alkaline and detergent stable protease from Aeromonas veronii OB3. Microbiology and Biotechnology Letters 48(3):358−65 doi: 10.4014/mbl.1912.12015
CrossRef Google Scholar
|
[49]
|
Chandrasekaran M, Sathiyabama M. 2014. Production, partial purification and characterization of protease from a phytopathogenic fungi Alternaria solani (Ell. and Mart.) Sorauer. Journal of Basic Microbiology 54:763−74 doi: 10.1002/jobm.201200584
CrossRef Google Scholar
|
[50]
|
Lanka S, Anjali CH, Pydipalli M. 2017. Enhanced production of alkaline protease by Aspergillus niger DEF 1 isolated from dairy form effluent and determination of its fibrinolytic ability. African Journal of Microbiological Research 11:440−49 doi: 10.5897/AJMR2016-8379
CrossRef Google Scholar
|
[51]
|
Benluvankar V, Jebapriya GR, Gnanadoss JJ. 2015. Protease production by Penicillium sp. LCJ228 under solid state fermentation using groundnut oilcake as substrate. International Journal of Life Science and Pharma Research 5:2250−480
Google Scholar
|
[52]
|
Al-Askar AA, AbdulKhair WM, Rashad YM. 2014. Production, purification and optimization of protease by Fusarium solani under solid fermentation and isolation of protease inhibitor protein from Rumex vesicarius L. Journal of Pure and Applied Microbiology 8:239−50
Google Scholar
|
[53]
|
Liu N, Huang L. 2015. Partial characterization of an acidic protease from Rhizopus stolonifer RN-11. Open Biotechnology Journal 9:199−203 doi: 10.2174/1874070701509010199
CrossRef Google Scholar
|
[54]
|
Shivasharanappa K, Hanchinalmath JV, Sundeep YS, Borah D, Talluri VSSLP. 2014. Optimization and production of alkaline proteases from agro byproducts using a novel Trichoderma viridiae strain VPG 12, isolated from agro soil. International Letters of Natural Sciences 9:78−84 doi: 10.18052/www.scipress.com/ilns.14.77
CrossRef Google Scholar
|
[55]
|
Alves MH, de Campos-Takaki GM, Okada K, Pessoa IHF, Milanez AI. 2005. Detection of extracellular protease in Mucor species. Revista Iberoamericana de Micologia 22:114−17 doi: 10.1016/S1130-1406(05)70020-6
CrossRef Google Scholar
|
[56]
|
de Oliveira JM, Fernandes P, Benevides RG, de Assis SA. 2020. Characterization and immobilization of protease secreted by the fungus Moorella speciosa. 3 Biotech 10:419 doi: 10.1007/s13205-020-02412-0
CrossRef Google Scholar
|
[57]
|
Tsuchiya K, Arai T, Seki K, Kimura T. 1987. Purification and some properties of alkaline proteinases from Cephalosporium sp. KSM388. Agriculture and Biological Chemistry 51:2959−65 doi: 10.1271/bbb1961.51.2959
CrossRef Google Scholar
|
[58]
|
Schlander M, Distler U, Tenzer S, Thines E, Claus H. 2017. Purification and properties of yeast proteases secreted by Wickerhamomyces anomalus 227 and Metschnikovia pulcherrima 446 during growth in a white grape juice. Fermentation 3:2 doi: 10.3390/fermentation3010002
CrossRef Google Scholar
|
[59]
|
Matoba S, Morano KA, Klionsky DJ, Kim K, Ogrydziak DM. 1997. Dipeptidyl aminopeptidase processing and biosynthesis of alkaline extracellular protease from Yarrowia lipolytica. Microbiology 143:3263−72 doi: 10.1099/00221287-143-10-3263
CrossRef Google Scholar
|
[60]
|
Hesham AEL, Alrumman SA, Al-Dayel MA, Salah HA. 2017. Screening and genetic identification of acidic and neutral protease-producing yeasts strains by 26S rRNA gene sequencing. Cytology and Genetics 51:221−29 doi: 10.3103/s0095452717030033
CrossRef Google Scholar
|
[61]
|
Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, et al. 2019. Microbial proteases applications. Frontiers in Bioengineering and Biotechnology 7:110 doi: 10.3389/fbioe.2019.00110
CrossRef Google Scholar
|
[62]
|
Vijayalakshmi S, Venkat KS, Thankamani V. 2011. Optimization and cultural characterization of Bacillus RV. B2.90 producing alkalophilic thermophilic protease. Research Journal of Biotechnology 6:26−32
Google Scholar
|
[63]
|
Barett AJ. 1994. Proteolytic enzymes: serine and cysteine peptidases.Methods in Enzymology. vol. 244. Amsterdam: Elsevier. 765 pp. https://doi.org/10.1016/s0076-6879(00)x0290-x
|
[64]
|
Li Q, Yi L, Marek P, Iverson BL. 2013. Commercial proteases: present and future. FEBS Letters 587:1155−63 doi: 10.1016/j.febslet.2012.12.019
CrossRef Google Scholar
|
[65]
|
Lundqvist H, Dahlgren C. 1995. The serine protease inhibitor diisopropylfluorophosphate inhibits neutrophil NADPH-oxidase activity induced by calcium ionophore ionomycin and serum opsonised yeast particles. Inflammation Research 44:510−517 doi: 10.1007/BF01757354
CrossRef Google Scholar
|
[66]
|
Barzkar N, Khan Z, Tamadoni Jahromi S, Pourmozaffar S, Gozari M, et al. 2021. A critical review on marine serine protease and its inhibitors: a new wave of drugs? International Journal of Biological Macromolecules 170:674−87 doi: 10.1016/j.ijbiomac.2020.12.134
CrossRef Google Scholar
|
[67]
|
Ellaiah P, Srinivasulu B, Adinarayana K. 2002. A review on microbial alkaline proteases. Journal of Scientific and Industrial Research 61:690−704
Google Scholar
|
[68]
|
Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, et al. 2018. Applications of microbial enzymes in food industry. Food Technology and Biotechnology 56:16−30 doi: 10.17113/ftb.56.01.18.5491
CrossRef Google Scholar
|
[69]
|
Singh R, Mittal A, Kumar M, Mehta PK. 2016. Microbial proteases in commercial applications. Journal of Pharmaceutical, Chemical and Biological Sciences 4:365−74
Google Scholar
|
[70]
|
Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A. 2021. Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech 11:428 doi: 10.1007/s13205-021-02928-z
CrossRef Google Scholar
|
[71]
|
Sundus H, Mukhtar H, Nawaz A. 2016. Industrial applications and production sources of serine alkaline proteases: a review. Journal of Bacteriology and Mycology 3:191−94
Google Scholar
|
[72]
|
Barzkar N. 2020. Marine microbial alkaline protease: an efficient and essential tool for various industrial applications. International Journal of Biological Macromolecules 161:1216−29 doi: 10.1016/j.ijbiomac.2020.06.072
CrossRef Google Scholar
|
[73]
|
Hailemichael F. 2021. Production and industrial application of microbial aspartic protease: a review. International Journal of Food Engineering and Technology 5:85−90 doi: 10.11648/j.ijfet.20210502.17
CrossRef Google Scholar
|
[74]
|
Vachher M, Sen A, Kapila R, Nigam A. 2021. Microbial therapeutic enzymes: a promising area of biopharmaceuticals. Current Research in Biotechnology 3:195−208 doi: 10.1016/j.crbiot.2021.05.006
CrossRef Google Scholar
|
[75]
|
Mamo J, Assefa F. 2018. The role of microbial aspartic protease enzyme in food and beverage industries. Journal of Food Quality 2018:7957269 doi: 10.1155/2018/7957269
CrossRef Google Scholar
|
[76]
|
Srilakshmi J, Madhavi J, Lavanya S. Ammani K. 2015. Commercial potential of fungal protease: past, present and future prospects. Journal of Pharmaceutical, Chemical and Biological Sciences 2:218−34
Google Scholar
|
[77]
|
Mukherjee AK, Adhikari H, Rai SK. 2008. Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation. Biochemical Engineering Journal 39:353−61 doi: 10.1016/j.bej.2007.09.017
CrossRef Google Scholar
|
[78]
|
Reddy LVA, Wee YJ, Yun JS, Ryu HW. 2008. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresource Technology 99:2242−49 doi: 10.1016/j.biortech.2007.05.006
CrossRef Google Scholar
|
[79]
|
Usman A, Mohammed S, Mamo J. 2021. Production, optimization, and characterization of an acid protease from filamentous fungus by solid-state fermentation. International Journal of Microbiology 2021:1−12 doi: 10.1155/2021/6685963
CrossRef Google Scholar
|
[80]
|
Beg QK, Saxena RK, Gupta R. 2002. De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochemistry 37:1103−9 doi: 10.1016/S0032-9592(01)00320-X
CrossRef Google Scholar
|
[81]
|
Anandan D, Marmer WN, Dudley RL. 2007. Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamari. Industrial Microbiology and Biotechnology 34:339−47 doi: 10.1007/s10295-006-0201-5
CrossRef Google Scholar
|
[82]
|
Bhunia B, Basak B, Dey A. 2012. A review on production of serine alkaline protease by Bacillus spp. Journal of Biochemical Technology 3:448−57
Google Scholar
|
[83]
|
Navanneth S, Bhuvanesh S, Bhaskar V, Vijay KP, Kandaswamy SKJ, et al. 2009. Optimization of medium for the production of subtilisin from Bacillus subtilis MTCC 441. African Journal of Biotechnology 8:6327−31 doi: 10.5897/AJB2009.000-9480
CrossRef Google Scholar
|
[84]
|
Queiroga AC, Pintado ME, Malcata FX. 2012. Use of response surface methodology to optimize protease synthesis by a novel strain of Bacillus sp. isolated from Portuguese sheep wool. Journal of Applied Microbiology 113:36−43 doi: 10.1111/j.1365-2672.2012.05300.x
CrossRef Google Scholar
|
[85]
|
Sharma KM, Kumar R, Vats S, Gupta A. 2014. Production, partial purification and characterization of alkaline protease from Bacillus arybhattai K3. International Journal of advanced Pharmaceutical and Biological Chemistry 3:290−98
Google Scholar
|
[86]
|
Sharma A, Sharma V, Saxena J, Yadav B, Alam A, et al. 2015. Optimization of protease production from bacteria isolated from soil. Applied Research Journal 1:388−394
Google Scholar
|
[87]
|
Sathish Kumar R, Ananthan G, Selva Prabhu A. 2014. Optimization of medium composition for alkaline protease production by Marinobacter sp. GA CAS9 using response surface methodology - A statistical approach. Biocatalysis and Agricultural Biotechnology 3:191−97 doi: 10.1016/j.bcab.2013.11.005
CrossRef Google Scholar
|
[88]
|
Badhe P, Joshi M, Adivarekar R. 2016. Optimized production of extracellular proteases by Bacillus subtilis from degraded abattoir waste. Journal of Bioscience and Biotechnology 5:29−36
Google Scholar
|
[89]
|
Akcan N. 2012. Production of extracellular protease in submerged fermentation by Bacillus licheniformis ATCC 12759. African Journal of Biotechnology 11:1729−35 doi: 10.5897/ajb11.2183
CrossRef Google Scholar
|
[90]
|
Puri S, Beg QK, Gupta R. 2002. Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Current Microbiology 44:286−90 doi: 10.1007/s00284-001-0006-8
CrossRef Google Scholar
|
[91]
|
Srividya S, Mala M. 2011. Influence of process parameters on the production of detergent compatible alkaline protease by a newly isolated Bacillus sp. Y. Turkish Journal of Biology 35:177−82 doi: 10.3906/biy-0906-47
CrossRef Google Scholar
|
[92]
|
Pathak AP, Deshmukh KB. 2012. Alkaline protease production, extraction and characterization from alkaliphilic Bacillus licheniformis KBDL4: a lonar soda lake isolate. Indian Journal of Experimental Biology 50:569−76
Google Scholar
|
[93]
|
Gouda MK. 2006. Optimization and purification of alkaline proteases produced by marine Bacillus sp. MIG newly isolated from eastern harbour of Alexandria. Polish Journal of Microbiology 55:119−26
Google Scholar
|
[94]
|
Singh SK, Tripathi VR, Jain RK, Vikram S, Garg SK. 2010. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease. Microbial Cell Factories 9:59 doi: 10.1186/1475-2859-9-59
CrossRef Google Scholar
|
[95]
|
Nisha NS, Divakaran J. 2014. Optimization of alkaline protease production from Bacillus subtilis NS isolated from sea water. African Journal of Biotechnology 13:1707−13 doi: 10.5897/AJB2014.13652
CrossRef Google Scholar
|
[96]
|
Jothiprakasam V, Sambantham M, Chinnathambi S. 2014. Optimization of alkaline protease production and its fibrinolytic activity from the bacterium Pseudomonas fluorescens isolated from fish waste discharged soil. African Journal of Biotechnology 13:3052−60 doi: 10.5897/AJB2014.13863
CrossRef Google Scholar
|
[97]
|
Jaswal RK, Kocher GS, Virk MS. 2008. Production of alkaline protease by Bacillus circulans using agricultural residues: A statistical approach. Indian Journal of Biotechnology 7:356−60
Google Scholar
|
[98]
|
Khosravi-Darani K, Falahatpishe HR, Jalali M. 2008. Alkaline protease production on date waste by an alkalophilic Bacillus sp. 2-5 isolated from soil. African Journal of Biotechnology 7:1536−42
Google Scholar
|
[99]
|
Lakshmi BKM, Hemalatha KPJ. 2014. Response surface optimization of medium composition for alkaline protease production by Bacillus cereus strain S8. International Journal of Pure Applied Bioscience 3:216−23
Google Scholar
|
[100]
|
Ibrahim ASS, Al-Salamah AA, Elbadawi YB, El-Tayeb MA, Ibrahim SSS. 2015. Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes. Electronic Journal of Biotechnology 18:236−43 doi: 10.1016/j.ejbt.2015.04.001
CrossRef Google Scholar
|
[101]
|
Zambare V, Nilegaonkar S, Kanekar P. 2011. A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization. New Biotechnology 28:173−81 doi: 10.1016/j.nbt.2010.10.002
CrossRef Google Scholar
|
[102]
|
Ravishankar K, Kumar MA, Saravanan K. 2012. Isolation of alkaline protease from Bacillus subtilis AKRS3. African Journal of Biotechnology 11:13415−27 doi: 10.5897/ajb12.404
CrossRef Google Scholar
|
[103]
|
Maal KB, Emtiazi G, Nahvi I. 2009. Production of alkaline protease by Bacillus cereus and Bacillus polymyxa in new industrial culture medium and its immobilization. African Journal of Microbiological Research 3:491−97
Google Scholar
|
[104]
|
Abusham RA, Rahman RNZR, Salleh AB, Basri M. 2009. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microbial Cell Factories 8:20 doi: 10.1186/1475-2859-8-20
CrossRef Google Scholar
|
[105]
|
Bezerra VHS, Cardoso SL, Fonseca-Bazzo Y, Silveira D, Magalhães PO, et al. 2021. Protease produced by endophytic fungi: a systematic review. Molecules 26:7062 doi: 10.3390/molecules26227062
CrossRef Google Scholar
|
[106]
|
Sepahy AA, Jabalameli L. 2011. Effect of culture conditions on the production of an extracellular protease by Bacillus sp. isolated from soil sample of Lavizan jungle park. Enzyme Research 2011:219628 doi: 10.4061/2011/219628
CrossRef Google Scholar
|
[107]
|
Hammami A, Bayoudh A, Abdelhedi O, Nasri M. 2018. Low-cost culture medium for the production of proteases by Bacillus mojavensis SA and their potential use for the preparation of antioxidant protein hydrolysate from meat sausage by-products. Annals of Microbiology 68:473−84 doi: 10.1007/s13213-018-1352-0
CrossRef Google Scholar
|
[108]
|
Elgammal EW, El-Khonezy MI, Ahmed EF, Abd-Elaziz AM. 2020. Enhanced production, partial purification, and characterization of alkaline thermophilic protease from the endophytic fungus Aspergillus ochraceus BT21. Egyptian Pharmaceutical Journal 19:338−49 doi: 10.4103/epj.epj_31_20
CrossRef Google Scholar
|
[109]
|
Suleiman AD, Abdul Rahman N, Yusof HM, Shariff FM, Yasid NA. 2020. Effect of cultural conditions on protease production by a thermophilic Geobacillus thermoglucosidasius SKF4 isolated from Sungai Klah hot spring park. Malaysia. Molecules 25:2609 doi: 10.3390/molecules25112609
CrossRef Google Scholar
|
[110]
|
Sellami-Kamoun A, Ghorbel-Frikha B, Haddar A, Nasri M. 2011. Enhanced Bacillus cereus BG1 protease production by the use of sardinelle (Sardinella aurita) powder. Annals of Microbiology 61:273−80 doi: 10.1007/s13213-010-0134-0
CrossRef Google Scholar
|
[111]
|
Gomri MA, Rico-Díaz A, Escuder-Rodríguez JJ, El Moulouk Khaldi T, González-Siso MI, et al. 2018. Production and characterization of an extracellular acid protease from thermophilic Brevibacillus sp. OA30 isolated from an Algerian hot spring. Microorganisms 6:31 doi: 10.3390/microorganisms6020031
CrossRef Google Scholar
|
[112]
|
Chittoor JT, Balaji L, Jayaraman G. 2016. Optimization of parameters that affect the activity of the alkaline protease from halotolerant bacterium, Bacillus acquimaris VITP4, by the application of response surface methodology and evaluation of the storage stability of the enzyme. Iranian Journal of Biotechnology 14:23−32
Google Scholar
|
[113]
|
Mienda BS, Yahya A. 2011. Engineering of microbial proteases: improving stability and catalytic performances. IIOAB Journal 2:10−15
Google Scholar
|
[114]
|
Rigo E, Rigoni RE, Lodea P, de Oliveira D, Freire DMG, et al. 2008. Application of different lipases as pretreatment in anaerobic treatment of wastewater. Environmental Engineering Science 25:1243−48 doi: 10.1089/ees.2007.0197
CrossRef Google Scholar
|
[115]
|
Mugdha A, Usha M. 2012. Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Scientific Reviews and Chemical Communications 2:31−40
Google Scholar
|
[116]
|
Sullivan TGO, Epstein AC, Korchin SR, Beaton NC. 1984. Applications of ultrafiltration in biotechnology. Chemical Engineering Progress 80:68−75
Google Scholar
|
[117]
|
Ratnaningsih E, Reynard R, Khoiruddin K, Wenten IG, Boopathy R. 2021. Recent advancements of UF-based separation for selective enrichment of proteins and bioactive peptides-a review. Applied Sciences 11:1078 doi: 10.3390/app11031078
CrossRef Google Scholar
|
[118]
|
Valério R, Crespo JG, Galinha CF, Brazinha C. 2021. Effect of ultrafiltration operating conditions for separation of ferulic acid from arabinoxylans in corn fibre alkaline extract. Sustainability 13:4682 doi: 10.3390/su13094682
CrossRef Google Scholar
|
[119]
|
Bell DJ, Hoare M, Dunnill P. 1983. The formation of protein precipitates and their centrifugal recovery. In Downstream Processing. Advances in Biochemical Engineering/Biotechnology. Vol 26. Heidelberg: Springer, Berlin. pp. 1−72. https://doi.org/10.1007/BFb0001860
|
[120]
|
Muthulakshmi C, Gomathi D, Kumar DG, Ravikumar G, Kalaiselvi M, et al. 2011. Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan of Biological Sciences 4:137−48
Google Scholar
|
[121]
|
Prabhavathy G, Rajasekara Pandian M, Senthikumar B. 2013. Identification of industrially important alkaline protease producing Bacillus subtilis by 16s rRNA sequence analysis and its applications. International Journal of Research in Pharmaceutical and Biomedical Sciences 4:332−38
Google Scholar
|
[122]
|
Iqbalsyah TM, Atikah M, Febriani F. 2019. Purification and partial characterization of a thermo-halostable protease produced by Geobacillus sp. strain PLS A isolated from undersea fumaroles. Journal of Taibah University Science 13(1):850−57 doi: 10.1080/16583655.2019.1650489
CrossRef Google Scholar
|
[123]
|
Hussain S, Rehman Au, Luckett DJ, Naqvi SMS, Blanchard CL. 2021. Protease inhibitors purified from the canola meal extracts of two genetically diverse genotypes exhibit antidiabetic and antihypertension properties. Molecules 26:2078 doi: 10.3390/molecules26072078
CrossRef Google Scholar
|
[124]
|
Boxi A, Parikh I, Radhika BS, Shryli KS. 2020. Current trends in protein purification: a review. International Journal of Scientific Research in Science and Technology 7(6):279−310 doi: 10.32628/ijsrst207645
CrossRef Google Scholar
|
[125]
|
Lalli E, Silva JS, Boi C, Sarti GC. 2020. Affinity membranes and monoliths for protein purification. Membranes 10:1 doi: 10.3390/membranes10010001
CrossRef Google Scholar
|
[126]
|
Mahmoodi S, Pourhassan-Moghaddam M, Wood DW, Majdi H, Zarghami N. 2019. Current affinity approaches for purification of recombinant proteins. Cogent Biology 5:1665406 doi: 10.1080/23312025.2019.1665406
CrossRef Google Scholar
|
[127]
|
Matsuda Y, Leung M, Okuzumi T, Mendelsohn B. 2020. A purification strategy utilizing hydrophobic interaction chromatography to obtain homogeneous species from a site-specific antibody drug conjugate produced by AJICAPTM first generation. Antibodies 9:16 doi: 10.3390/antib9020016
CrossRef Google Scholar
|
[128]
|
Osuna-Amarillas PS, Rouzaud-Sandez O, Higuera-Barraza OA, Arias-Moscoso JL, Lόpez-Mata MA, et al. 2019. Hydrophobic interaction chromatography as a separation method of alkaline protease from viscera of Scomberomorus sierra. TIP Revista Especializada en Cienc Químico-Biologicas 22:1−10 doi: 10.22201/fesz.23958723e.2019.0.183
CrossRef Google Scholar
|
[129]
|
Pereira Bresolin IRA, Lingg N, Bresolin ITL, Jungbauer A. 2020. Hydrophobic interaction chromatography as polishing step enables obtaining ultra-pure recombinant antibodies. Journal of Biotechnology 324:100020 doi: 10.1016/j.btecx.2020.100020
CrossRef Google Scholar
|
[130]
|
Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. 2015. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment 29:205−20 doi: 10.1080/13102818.2015.1008192
CrossRef Google Scholar
|
[131]
|
Calzoni E, Cesaretti A, Tacchi S, Caponi S, Pellegrino RM, et al. 2021. Covalent immobilization of proteases on polylactic acid for proteins hydrolysis and waste biomass protein content valorization. Catalysts 11:167 doi: 10.3390/catal11020167
CrossRef Google Scholar
|
[132]
|
Tischer W, Wedenkind F. 1999. Immobilized enzymes: methods and applications. In Biocatalysis - From Discovery to Application. Topics in Current Chemistry, ed. Fessner WD, Archelas A, Demirjian DC, et al. Heidelberg: Springer, Berlin. pp. 95−126. https://doi.org/10.1007/3-540-68116-7_4
|
[133]
|
Duman YA, Tekin N. 2020. Kinetic and thermodynamic properties of purified alkaline protease from Bacillus pumilus Y7 and non-covalent immobilization to poly(vinylimidazole)/clay hydrogel. Engineering in Life Sciences 20(1-2):36−49 doi: 10.1002/elsc.201900119
CrossRef Google Scholar
|
[134]
|
Datta S, Rene CL, Rajaram YRS. 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1−9 doi: 10.1007/s13205-012-0071-7
CrossRef Google Scholar
|
[135]
|
Adetunji AI, Olaniran AO. 2018. Immobilization and characterization of lipase from an indigenous Bacillus aryabhattai SE3-PB isolated from lipid-rich wastewater. Preparative Biochemistry and Biotechnology 48(10):898−905 doi: 10.1080/10826068.2018.1514517
CrossRef Google Scholar
|
[136]
|
Kamal S, Hussain F, Bibi I, Azeem M, Ahmad T, et al. 2022. Mutagenesis and immobilization of chitB-protease for induced de-staining and goat skin dehairing potentialities. Catalysis Letters 152:12−27 doi: 10.1007/s10562-021-03605-9
CrossRef Google Scholar
|
[137]
|
Asuri P, Karajanagi SS, Sellitto E, Kim DY, Kane RS, et al. 2006. Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnology and Bioengineering 95:804−11 doi: 10.1002/bit.21016
CrossRef Google Scholar
|
[138]
|
Sheldon RA. 2007. Cross-linked enzyme aggregates (CLEA®s): stable and recyclable biocatalysts. Biochemical Society 35:1583−87 doi: 10.1042/BST0351583
CrossRef Google Scholar
|
[139]
|
Tian X, Anming W, Lifeng H, Haifeng L, Zhenming C, et al. 2009. Recent advance in the support and technology used in enzyme immobilization. African Journal of Biotechnology 8:4724−33
Google Scholar
|
[140]
|
Hernandez K, Fernandez-Lafuente R. 2011. Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and Microbial Technology 48:107−22 doi: 10.1016/j.enzmictec.2010.10.003
CrossRef Google Scholar
|
[141]
|
Saifuddin N, Raziah AZ, Junizah AR. 2013. carbon nanotubes: a review on structure and their interaction with proteins. Journal of Chemistry 2013:676815 doi: 10.1155/2013/676815
CrossRef Google Scholar
|
[142]
|
Qamar SA, Asgher M, Bilal M. 2020. Immobilization of alkaline protease from Bacillus brevis using Ca-Alginate entrapment strategy for improved catalytic stability silver recovery, and dehairing potentialities. Catalysis Letters 150:3572−83 doi: 10.1007/s10562-020-03268-y
CrossRef Google Scholar
|
[143]
|
Soleimani M, Khani A, Najafzadeh K. 2012. Biotechnology expanding horizonsa-amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. Journal of Molecular Catalysis B: Enzymatic 74:1−5 doi: 10.1016/j.molcatb.2011.07.011
CrossRef Google Scholar
|
[144]
|
Mason RD, Detar CC, Weetall HH. 1975. Protease covalently coupled to porous glass: preparation and characterization. Biotechnology and Bioengineering 17(7):1019−27 doi: 10.1002/bit.260170706
CrossRef Google Scholar
|
[145]
|
Khan AA, Akhtar S, Husain Q. 2006. Direct immobilization of polyphenol oxidases on celite 545 from ammonium sulphate fractionated proteins of potato (Solanum tuberosum). Journal of Molecular Catalysis B 40:58−63 doi: 10.1016/j.molcatb.2006.03.001
CrossRef Google Scholar
|
[146]
|
Ansari SA, Husain Q. 2012. Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-celite 545 immobilized Aspergillus oryzae β-galactosidase. Food and Bioproducts Processing 90:351−359 doi: 10.1016/j.fbp.2011.07.003
CrossRef Google Scholar
|
[147]
|
Wu C, Zhou G, Jiang X, Ma J, Zhang H, et al. 2012. Active biocatalysts based on Candida rugosa lipase immobilized in vesicular silica. Process Biochemistry 47:953−959 doi: 10.1016/j.procbio.2012.03.004
CrossRef Google Scholar
|
[148]
|
Gemenier P. 1992. Materials for enzyme engineering. In Enzyme Engineering, ed. Gemeiner P. 1st Edition. New York: Ellis Horwood. pp. 113−19
|
[149]
|
Brena BM, Viera BF. 2006. Immobilization of enzymes. In Immobilization of enzymes and cells, ed. : Guisan JM. 3rd Edition. New Jersey: Humana Press Inc. pp. 123−24. https://doi.org/10.1007/978-1-62703-550-7
|
[150]
|
Kim J, Grate JW, Wang P. 2006. Nanostructures for enzyme stabilization. Chemical and Engineering Science 61:1017−26 doi: 10.1016/j.ces.2005.05.067
CrossRef Google Scholar
|
[151]
|
Lee CH, Lin TS, Mou CY. 2009. Mesoporous materials for encapsulating enzymes. Nanotoday 4:165−79 doi: 10.1016/j.nantod.2009.02.001
CrossRef Google Scholar
|
[152]
|
Huang XJ, Chen PC, Huang F, Ou Y, Chen MR, et al. 2011. Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic 70:95−100 doi: 10.1016/j.molcatb.2011.02.010
CrossRef Google Scholar
|
[153]
|
Geethanjali S, Subash A. 2013. Optimization and immobilization of purified Labeo rohita visceral protease by entrapment method. Enzyme Research 2013:874050 doi: 10.1155/2013/874050
CrossRef Google Scholar
|
[154]
|
Park JM, Kim M, Park HS, Jang M, Min J, et al. 2013. Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antimicrobial applications. International Journal of Biological Macromolecules 54:37−43 doi: 10.1016/j.ijbiomac.2012.11.025
CrossRef Google Scholar
|
[155]
|
Sahin S, Ozmen I, Kir E. 2015. Purification, immobilization, and characterization of protease from local Bacillus subtilis M-11. Asia-Pacific Journal of Chemical Engineering 10:241−47 doi: 10.1002/apj.1868
CrossRef Google Scholar
|
[156]
|
Guleria S, Walia A, Chauhan A, Shirkot CK. 2016. Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein. 3 Biotech 6:208 doi: 10.1007/s13205-016-0519-2
CrossRef Google Scholar
|
[157]
|
Ibrahim ASS, Al-Salamah AA, El-Toni AM, Almaary KS, El-Tayeb MA, et al. 2016. Enhancement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres. International Journal of Molecular Sciences 17:184 doi: 10.3390/ijms17020184
CrossRef Google Scholar
|
[158]
|
Silva CJSM, Zhang Q, Shen J, Cavaco-Paulo A. 2006. Immobilization of proteases with a water soluble-insoluble reversible polymer for treatment of wool. Enzyme and Microbial Technology 39:634−40 doi: 10.1016/j.enzmictec.2005.11.016
CrossRef Google Scholar
|
[159]
|
Nandan A, Nampoothiri KM. 2020. Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Applied Microbiology and Biotechnology 104:5243−57 doi: 10.1007/s00253-020-10641-9
CrossRef Google Scholar
|
[160]
|
Sharma KM, Kumar R, Panwar S, Kumar A. 2017. Microbial alkaline proteases: optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology 15:115−26 doi: 10.1016/j.jgeb.2017.02.001
CrossRef Google Scholar
|
[161]
|
Mothe T, Sultanpuram VR. 2016. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech 6:53 doi: 10.1007/s13205-016-0377-y
CrossRef Google Scholar
|
[162]
|
Yilmaz B, Baltaci MO, Sisecioglu M, Adiguzel A. 2016. Thermotolerant alkaline protease enzyme from Bacillus licheniformis A10: purification, characterization, effects of surfactants and organic solvents. Journal of Enzyme Inhibition and Medicinal Chemistry 31:1241−47 doi: 10.3109/14756366.2015.1118687
CrossRef Google Scholar
|
[163]
|
Nadeem M, Qazi JI, Syed Q, Gulsher M. 2013. Purification and characterization of an alkaline protease from Bacillus licheniformis UV-9 for detergent formulations. Songklanakarin Journal of Science and Technology 35:187−95
Google Scholar
|
[164]
|
Jayakumar R, Jayashree S, Annapurna B, Seshadri S. 2012. Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Applied Biochemistry and Biotechnology 168:1849−66 doi: 10.1007/s12010-012-9902-6
CrossRef Google Scholar
|
[165]
|
Patil U, Mokashe N, Chaudhari A. 2016. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: purification and characterization. Preparative Biochemistry and Biotechnology 46:56−64 doi: 10.1080/10826068.2014.979205
CrossRef Google Scholar
|
[166]
|
Sari E, Loğoğlu E, Öktemer A. 2015. Purification and characterization of organic solvent stable serine alkaline protease from newly isolated Bacillus circulans M34. Biomedical Chromatography 29:1356−63 doi: 10.1002/bmc.3431
CrossRef Google Scholar
|
[167]
|
Waghmare SR, Gurav AA, Mali SA, Nadaf NH, Jadhav DB, et al. 2015. Purification and characterization of novel organic solvent tolerant 98 kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK. Protein Expression and Purification 107:1−6 doi: 10.1016/j.pep.2014.11.002
CrossRef Google Scholar
|
[168]
|
Yildirim V, Baltaci MO, Ozgencli I, Sisecioglu M, Adiguzel A, et al. 2017. Purification and biochemical characterization of a novel thermostable serine alkaline protease from Aeribacillus pallidus C10: a potential additive for detergents. Journal of Enzyme Inhibition and Medicinal Chemistry 32:468−77 doi: 10.1080/14756366.2016.1261131
CrossRef Google Scholar
|
[169]
|
Xin Y, Sun Z, Chen Q, Wang J, Wang Y, et al. 2015. Purification and characterization of a novel extracellular thermostable alkaline protease from Streptomyces sp. M30. Journal of Microbiology and Biotechnology 25:1944−53 doi: 10.4014/jmb.1507.07017
CrossRef Google Scholar
|
[170]
|
Firouzbakht H, Zibaee A, Hoda H, Sohani MM. 2015. Purification and characterization of the cuticle-degrading proteases produced by an isolate of Beauveria bassiana using the cuticle of the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae). Journal of Plant Protection Research 55(2):179−86 doi: 10.1515/jppr-2015-0024
CrossRef Google Scholar
|
[171]
|
Adinarayana K, Ellaiah P, Prasad DS. 2003. Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS PharmSciTech 4:56 doi: 10.1208/pt040456
CrossRef Google Scholar
|
[172]
|
Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S. 2008. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90:1291−305 doi: 10.1016/j.biochi.2008.03.004
CrossRef Google Scholar
|
[173]
|
Akel H, Al-Quadan F, Yousef TK. 2009. Characterization of a purified thermostable protease from hyperthermophilic Bacillus strain HUTBS71. European Journal of Scientific Research 31:280−88
Google Scholar
|
[174]
|
Sarker PK, Talukdar SA, Deb P, Sayem SMS, Mohsina K. 2013. Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003. Springerplus 2:506 doi: 10.1186/2193-1801-2-506
CrossRef Google Scholar
|
[175]
|
Bose A, Chawdhary V, Keharia H, Subramanian RB. 2014. Production and characterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. Annals of Microbiology 64:343−54 doi: 10.1007/s13213-013-0669-y
CrossRef Google Scholar
|
[176]
|
Maruthiah T, Esakkiraj P, Prabakaran G, Palavesam A, Immanuel G. 2013. Purification and characterization of moderately halophilic alkaline serine protease from marine Bacillus subtilis AP-MSU 6. Biocatalysis and Agricultural Biotechnology 2:116−19 doi: 10.1016/j.bcab.2013.03.001
CrossRef Google Scholar
|
[177]
|
Benkiar A, Nadia ZJ, Badis A, Rebzani F, Soraya BT, et al. 2013. Biochemical and molecular characterization of a thermo- and detergent-stable alkaline serine keratinolytic protease from Bacillus circulans strain DZ100 for detergent formulations and feather-biodegradation process. International Biodeterioration & Biodegradation 83:129−38 doi: 10.1016/j.ibiod.2013.05.014
CrossRef Google Scholar
|
[178]
|
Joshi S, Satyanarayana T. 2013. Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresource Technology 131:76−85 doi: 10.1016/j.biortech.2012.12.124
CrossRef Google Scholar
|
[179]
|
Annamalai N, Rajeswari MV, Balasubramanian T. 2014. Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food and Bioproducts Processing 92:335−42 doi: 10.1016/j.fbp.2013.08.009
CrossRef Google Scholar
|
[180]
|
Nilegaonkar SS, Zambare VP, Kanekar PP, Dhakephalkar PK, Sarnaik SS. 2007. Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresource Technology 98:1238−45 doi: 10.1016/j.biortech.2006.05.003
CrossRef Google Scholar
|
[181]
|
Ahmetoglu N, Bekler FM, Acer O, Guven RG, Guven K. 2015. Production, purification and characterization of thermostable metallo-protease from newly isolated Bacillus sp. KG5. EurAsian Journal of Biosciences 9:1−11
Google Scholar
|
[182]
|
Lagzian M, Asoodeh A. 2012. An extremely thermotolerant, alkaliphilic subtilisin-like protease from hyperthermophilic Bacillus sp. MLA64. International Journal of Biological Macromolecules 51:960−67 doi: 10.1016/j.ijbiomac.2012.08.009
CrossRef Google Scholar
|
[183]
|
Moradian F, Khajeh K, Naderi-Manesh H, Ahmadvand R, Sajedi RH, et al. 2006. Thiol-dependent serine alkaline proteases from Bacillus sp. HR-08 and KR-8102: isolation, production, and characterization. Applied Biochemistry and Biotechnology 134:77−87 doi: 10.1385/abab:134:1:77
CrossRef Google Scholar
|
[184]
|
Farhadian S, Asoodeh A, Lagzian M. 2015. Purification, biochemical characterization and structural modeling of a potential htrA-like serine protease from Bacillus subtilis DR8806. Journal of Molecular Catalysis B: Enzymatic 115:51−58 doi: 10.1016/j.molcatb.2015.02.001
CrossRef Google Scholar
|
[185]
|
Tekİn N, Cİhan AÇ, Takaç ZS, Tüzün CY, Tunç K, et al. 2012. Alkaline protease production of Bacillus cohnii APT5. Turkish Journal of Biology 36:430−40 doi: 10.3906/biy-1104-6
CrossRef Google Scholar
|
[186]
|
Ahmed I, Zia MA, Iqbal HMN. 2011. Purification and kinetic parameters characterization of an alkaline protease produced from Bacillus subtilis through submerged fermentation technique. World Applied Science Journal 12:751−57
Google Scholar
|
[187]
|
Zhou C, Qin H, Chen X, Zhang Y, Xue Y, et al. 2018. A novel alkaline protease from alkaliphilic idiomarina sp C9-1 with potential application for eco-friendly enzymatic dehairing in the leather industry. Scientific Reports 8:16467 doi: 10.1038/s41598-018-34416-5
CrossRef Google Scholar
|
[188]
|
Sugumaran KR, Ponnusami V, Gowdhaman D, Gunasekar V, Srivastava SN. 2012. Thermostable alkaline protease production from Bacillus thuringiensis MTCC 1953: optimization and kinetic studies. International Journal of ChemTech Research 4:198−202
Google Scholar
|
[189]
|
Subba Rao C, Sathish T, Ravichandra P, Prakasham RS. 2009. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochemistry 44:262−68 doi: 10.1016/j.procbio.2008.10.022
CrossRef Google Scholar
|
[190]
|
Jain D, Pancha I, Mishra SK, Shrivastav A, Mishra S. 2012. Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.: a potential additive for laundry detergents. Bioresource Technology 115:228−36 doi: 10.1016/j.biortech.2011.10.081
CrossRef Google Scholar
|
[191]
|
Ghobadi Nejad Z, Yaghmaei S, Moghadam N, Sadeghein B. 2014. Some investigations on protease enzyme production kinetics using Bacillus licheniformis BBRC 100053 and effects of inhibitors on protease activity. International Journal of Chemical Engineering 2014:394860 doi: 10.1155/2014/394860
CrossRef Google Scholar
|
[192]
|
Adetunji AI, Olaniran AO. 2018. Treatment of lipid-rich wastewater using a mixture of free or immobilized bioemulsifier and hydrolytic enzymes from indigenous bacterial isolates. Desalination and Water Treatment 132:274−80 doi: 10.5004/dwt.2018.23161
CrossRef Google Scholar
|
[193]
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, et al. 2023. Molecular modification and biotechnological applications of microbial aspartic proteases. Critical Reviews in Biotechnology doi: 10.1080/07388551.2023.2171850
CrossRef Google Scholar
|
[194]
|
Al-Ghanayem AA, Joseph B. 2020. Current prospective in using cold-active enzymes s eco-friendly detergent additive. Applied Microbiology and Biotechnology 104:2871−82 doi: 10.1007/s00253-020-10429-x
CrossRef Google Scholar
|
[195]
|
Dai R, Ten AS, Mrksich M. 2019. Profiling protease activity in laundry detergents with peptide arrays and SAMDI mass spectrometry. Industrial and Engineering Chemistry Research 58(25):10692−97 doi: 10.1021/acs.iecr.9b00057
CrossRef Google Scholar
|
[196]
|
Grbavčić S, Bézbradica D, Izrael-Živković L, Avramović N, Milosavić N, et al. 2011. Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresource Technology 102:11226−33 doi: 10.1016/j.biortech.2011.09.076
CrossRef Google Scholar
|
[197]
|
Baweja M, Tiwari R, Singh PK, Nain L, Shukla P. 2016. An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive. Frontiers in Microbiology 7:1195 doi: 10.3389/fmicb.2016.01195
CrossRef Google Scholar
|
[198]
|
Olsen HS, Falholt P. 1998. The role of enzymes in modern detergency. Journal of Surfactants and Detergents 1:555−67 doi: 10.1007/s11743-998-0058-7
CrossRef Google Scholar
|
[199]
|
Niyonzima FN, More S. 2015. Detergent-compatible proteases: microbial production, properties, and stain removal analysis. Preparative Biochemistry and Biotechnology 45(3):233−58 doi: 10.1080/10826068.2014.907183
CrossRef Google Scholar
|
[200]
|
Nascimento WCAd, Martins MLL. 2006. Studies on the stability of protease from Bacillus sp. and its compatibility with commercial detergent. Brazilian Journal of Microbiology 37:307−11 doi: 10.1590/s1517-83822006000300020
CrossRef Google Scholar
|
[201]
|
Ghafoor A, Hasnain S. 2009. Characteristics of an extracellular protease isolated from Bacillus subtilis AG-1 and its performance in relation to detergent components. Annals of Microbiology 59:559−63 doi: 10.1007/BF03175146
CrossRef Google Scholar
|
[202]
|
Abou-Elela GM, Ibrahim HAH, Hassan SW, Abd-Elnaby H, El-Toukhy NMK. 2011. Alkaline protease production by alkaliphilic marine bacteria isolated from Marsa-Matrouh (Egypt) with special emphasis on Bacillus cereus purified protease. African Journal of Biotechnology 10:4631−42
Google Scholar
|
[203]
|
Bezawada J, Yan S, John RP, Tyagi RD, Surampalli RY. 2011. Recovery of Bacillus licheniformis alkaline protease from supernatant of fermented wastewater sludge using ultrafiltration and its characterization. Biotechnology Research International 2011:238549 doi: 10.4061/2011/238549
CrossRef Google Scholar
|
[204]
|
Jaouadi B, Abdelmalek B, Jaouadib NZ, Bejar S. 2011. The bioengineering and industrial applications of bacterial alkaline proteases: the case of SAPB and KERAB. In Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications, ed. Carpi A. Rijeka: IntechOpen. http://doi.org/10.5772/23850
|
[205]
|
Mojsov K. 2011. Applications of enzymes in the textile industry: a review. 2nd International Congress: Engineering, Ecology and Materials in the Processing Industry: Jahorina, Bosnia and Herzegovina. Tehnoloski Fakultet Zvornik. pp. 230−39
|
[206]
|
Navarro D, Wu J, Lin W, Fullana-i-Palmer P, Puig R. 2020. Life cycle assessment and leather production. Journal of Leather Science and Engineering 2(1):321−33 doi: 10.1186/s42825-020-00035-y
CrossRef Google Scholar
|
[207]
|
Choudhary RB, Jana AK, Jha MK. 2004. Enzyme technology applications in leather processing. Indian Journal of Chemical Technology 11:659−71
Google Scholar
|
[208]
|
Famielec S. 2020. Chromium concentrate recovery from solid tannery waste in a thermal process. Materials 13(7):1533 doi: 10.3390/ma13071533
CrossRef Google Scholar
|
[209]
|
Hasan MJ, Haque P, Rahman MM. 2022. Protease enzyme based cleaner leather processing: A review. Journal of Cleaner Production 365:132826 doi: 10.1016/j.jclepro.2022.132826
CrossRef Google Scholar
|
[210]
|
Adrio JL, Demain AL. 2014. Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117−39 doi: 10.3390/biom4010117
CrossRef Google Scholar
|
[211]
|
Khambhaty Y. 2020. Applications of enzymes in leather processing. Environmental Chemistry Letters 18:747−69 doi: 10.1007/s10311-020-00971-5
CrossRef Google Scholar
|
[212]
|
de Souza FR, Gutterres M. 2012. Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes. Brazilian Journal of Chemical Engineering 29:471−81 doi: 10.1590/s0104-66322012000300004
CrossRef Google Scholar
|
[213]
|
Biškauskaitė R, Valeikienė V, Valeika V. 2021. Enzymes for leather processing: effect on pickling and chroming. Materials 14(6):1480 doi: 10.3390/ma14061480
CrossRef Google Scholar
|
[214]
|
Jaouadi NZ, Rekik H, Badis A, Trabelsi S, Belhoul M, et al. 2013. Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and hide-dehairing activities. PLoS ONE 8:e76722 doi: 10.1371/journal.pone.0076722
CrossRef Google Scholar
|
[215]
|
Arunachalam C, Sarita K. 2009. Protease enzyme: an eco-friendly alternative for leather industry. Indian Journal of Science and Technology 2:29−32 doi: 10.17485/ijst/2009/v2i12.10
CrossRef Google Scholar
|
[216]
|
Vijayaraghavan P, Lazarus S, Vincent SGP. 2014. De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: biosynthesis and properties. Saudi Journal of Biological Sciences 21:27−34 doi: 10.1016/j.sjbs.2013.04.010
CrossRef Google Scholar
|
[217]
|
Kshetri P, Ningthoujam DS. 2016. Keratinolytic activities of alkaliphilic Bacillus sp. MBRL 575 from a novel habitat, limestone deposit site in Manipur, India. SpringerPlus 5:595 doi: 10.1186/s40064-016-2239-9
CrossRef Google Scholar
|
[218]
|
Ward OP. 2011. Proteases. In Comprehensive Biotechnology, ed. Moo-Young M. 2nd Edition. Burlington: Academic Press. pp. 571−82. https://doi.org/10.1016/B978-0-08-088504-9.00222-1
|
[219]
|
Pai JS. 2003. Application of microorganisms in food biotechnology. Indian Journal of Biotechnology 2:382−86
Google Scholar
|
[220]
|
Qureshi MA, Khare AK, Pervez A. 2015. Enzymes used in dairy industries. International Journal of Applied Research 1:523−27
Google Scholar
|
[221]
|
Arshad MS, Kwon JH, Imran M, Sohaib M, Aslam A, et al. 2016. Plant and bacterial proteases: a key towards improving meat tenderization, a mini review. Cogent Food and Agriculture 2(1):1261780 doi: 10.1080/23311932.2016.1261780
CrossRef Google Scholar
|
[222]
|
Dahiya S, Bajaj BK, Kumar A, Tiwari SK, Singh B. 2020. A review on biotechnological potential of multifarious enzymes in bread making. Process Biochemistry 99:290−306 doi: 10.1016/j.procbio.2020.09.002
CrossRef Google Scholar
|
[223]
|
Meghwanshi GK, Kaur N, Verma S, Dabi NK, Vashishtha A, et al. 2020. Enzymes for pharmaceutical and therapeutic applications. Biotechnology and Applied Biochemistry 67(4):586−601 doi: 10.1002/bab.1919
CrossRef Google Scholar
|
[224]
|
Verma A, Singh H, Anwar S, Chattopadhyay A, Tiwari KK, et al. 2017. Microbial keratinases: industrial enzymes with waste management potential. Critical Reviews in Biotechnology 37(4):476−91 doi: 10.1080/07388551.2016.1185388
CrossRef Google Scholar
|
[225]
|
Karam J, Nicell JA. 1997. Potential applications of enzymes in waste treatment. Journal of Chemical Technology and Biotechnology 69:141−53 doi: 10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U
CrossRef Google Scholar
|
[226]
|
Pandey D, Singh R, Chand D. 2011. An improved bioprocess for synthesis of acetohydroxamic acid using DTT (dithiothreitol) treated resting cells of Bacillus sp. APB-6. Bioresource Technology 102:6579−86 doi: 10.1016/j.biortech.2011.03.071
CrossRef Google Scholar
|
[227]
|
Venugopal V, Alur MD, Nerkar DP. 1989. Solubilization of fish proteins using immobilized microbial cells. Biotechnology and Bioengineering 33:1098−1103 doi: 10.1002/bit.260330904
CrossRef Google Scholar
|
[228]
|
Abdul Gafar A, Khayat ME, Ahmad SA, Yasid NA, Shukor MY. 2020. Response surface methodology for the optimization of keratinase production in culture medium containing feathers by Bacillus sp. UPM-AAG1. Catalysts 10:848 doi: 10.3390/catal10080848
CrossRef Google Scholar
|
[229]
|
Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU. 2020. Microbial keratinase: next generation green catalyst and prospective applications. Frontiers in Microbiology 11:580164 doi: 10.3389/fmicb.2020.580164
CrossRef Google Scholar
|
[230]
|
Kojima M, Kanai M, Tominaga M, Kitazume S, Inoue A, et al. 2006. Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10:229−35 doi: 10.1007/s00792-005-0491-y
CrossRef Google Scholar
|
[231]
|
Cortezi M, Contiero J, de Lima CJB, Lovaglio RB, Monti R. 2008. Characterization of a feather degrading by Bacillus amyloliquefaciens protease: a new strain. World Journal of Agricultural Science 4:648−56
Google Scholar
|
[232]
|
Ni H, Chen QH, Chen F, Fu ML, Dong YC, et al. 2011. Improved keratinase production for feather degradation by Bacillus licheniformis ZJUEL31410 in submerged cultivation. African Journal of Biotechnology 10:7236−44
Google Scholar
|
[233]
|
Ul Haq I, Akram F, Jabbar Z. 2020. Keratinolytic enzyme-mediated biodegradation of recalcitrant poultry feathers waste by newly isolated Bacillus sp. NKSP-7 under submerged fermentation. Folia Microbiologica 65:823−34 doi: 10.1007/s12223-020-00793-6
CrossRef Google Scholar
|
[234]
|
Dalev PG. 1994. Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. Bioresource Technology 48:265−67 doi: 10.1016/0960-8524(94)90156-2
CrossRef Google Scholar
|
[235]
|
Mukhopadhyay RP, Chandra AL. 1992. Application of Streptomycete in the removal of waste keratinous materials. In Industrial Biotechnology, eds. Malik VS, Sridhar P. New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd. pp. 595−97
|
[236]
|
Takami H, Nakamura S, Aono R, Horikoshi K. 1992. Degradation of human hair by a thermostable alkaline protease from alkaliphilic Bacillus sp. no. AH-101. Bioscience, Biotechnology and Biochemistry 56:1667−69 doi: 10.1271/bbb.56.1667
CrossRef Google Scholar
|
[237]
|
Li Q. 2021. Structure, application, and biochemistry of microbial keratinases. Frontiers in Microbiology 12:674345 doi: 10.3389/fmicb.2021.674345
CrossRef Google Scholar
|
[238]
|
Chanalia P, Gandhi D, Jodha D, Singh J. 2011. Applications of microbial proteases in pharmaceutical industry: an overview. Reviews in Medical Microbiology 22:96−101 doi: 10.1097/MRM.0b013e3283494749
CrossRef Google Scholar
|
[239]
|
Kudrya VA, Simonenko IA. 1994. Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subtilis. Applied Microbiology and Biotechnology 41:505 doi: 10.1007/BF00178480
CrossRef Google Scholar
|
[240]
|
Altaf F, Wu S, Kasim V. 2021. Role of fibrinolytic enzymes in anti-thrombosis therapy. Frontiers in Molecular Biosciences 8:680397 doi: 10.3389/fmolb.2021.680397
CrossRef Google Scholar
|
[241]
|
Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, et al. 2007. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. The Journal of Clinical Investigation 117:746−56 doi: 10.1172/JCI26206
CrossRef Google Scholar
|
[242]
|
Tamimi Z, Al Habashneh R, Hamad I, Al-Ghazawi M, Abu Roqa'a A, et al. 2021. Efficacy of serratiopeptidase after impacted third molar surgery: a randomized controlled clinical trial. BMC Oral Health 21:91 doi: 10.1186/s12903-021-01451-0
CrossRef Google Scholar
|
[243]
|
Fossati A. 1999. Antiinflammatory effects of seaprose-S on various inflammation models. Drugs under Experimental and Clinical Research 24:263−70
Google Scholar
|
[244]
|
Watanabe K. 2004. Collagenolytic proteases from bacteria. Applied Microbiology and Biotechnology 63:520−26 doi: 10.1007/s00253-003-1442-0
CrossRef Google Scholar
|
[245]
|
Alipour H, Raz A, Zakeri S, Dinparast Djadid N. 2016. Therapeutic applications of collagenase (metalloproteases): a review. Asian Pacific Journal of Tropical Biomedicine 6(11):975−81 doi: 10.1016/j.apjtb.2016.07.017
CrossRef Google Scholar
|
[246]
|
Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF. 2003. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrobial Agents and Chemotherapy 47:3407−14 doi: 10.1128/AAC.47.11.3407-3414.2003
CrossRef Google Scholar
|
[247]
|
Bastos MCF, Coutinho BG, Coelho MLV. 2010. Lysostaphin: a staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals 3:1139−61 doi: 10.3390/ph3041139
CrossRef Google Scholar
|
[248]
|
Jayakumar J, Kumar VA, Biswas L, Biswas R. 2021. Therapeutic applications of lysostaphin against Staphylococcus aureus. Journal of Applied Microbiology 131(3):1072−82 doi: 10.1111/jam.14985
CrossRef Google Scholar
|
[249]
|
Pratt CB, Simone JV, Zee P, Aur RJA, Johnson WW. 1970. Comparison of daily versus weekly L-asparaginase for the treatment of childhood acute leukemia. Journal of Pediatrics 77:474−83 doi: 10.1016/S0022-3476(70)80023-3
CrossRef Google Scholar
|
[250]
|
Siritapetawee J, Thammasirirak S, Samosornsuk W. 2012. Antimicrobial activity of a 48-kDa protease (AMP48) from Artocarpus heterophyllus latex. European Review for Medical and Pharmacological Sciences 16:132−37
Google Scholar
|