[1]
|
Wang X, Ran J. 2014. Evolution and biogeography of gymnosperms. Molecular Phylogenetics and Evolution 75:24−40 doi: 10.1016/j.ympev.2014.02.005
CrossRef Google Scholar
|
[2]
|
Florin R. 1951. Evolution in cordaites and conifers. Acta Horticulturae Bergiani 15:285−388
Google Scholar
|
[3]
|
Carlsbecker A, Sundström J, Tandre K, Englund M, Kvarnheden A, et al. 2003. The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones. Evolution and Development 5:551−61 doi: 10.1046/j.1525-142X.2003.03060.x
CrossRef Google Scholar
|
[4]
|
Becker A, Saedler H, Theissen G. 2003. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Development Genes and Evolution 213:567−72 doi: 10.1007/s00427-003-0358-0
CrossRef Google Scholar
|
[5]
|
Cooke JEK, Eriksson M, Junttila O. 2012. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant, Cell & Environment 35:1707−28 doi: 10.1111/j.1365-3040.2012.02552.x
CrossRef Google Scholar
|
[6]
|
Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP. 2017. Photoperiod-and temperature-mediated control of phenology in trees a molecular perspective. New Phytologist 213:511−24 doi: /10.1111/nph.14346
CrossRef Google Scholar
|
[7]
|
Ma J, Chen X, Song Y, Zhang G, Zhou X, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 187:247−62 doi: 10.1093/plphys/kiab250
CrossRef Google Scholar
|
[8]
|
Niu S, Li J, Bo W, Yang W, Zuccolo A, et al. 2021. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185:204−217.e14 doi: 10.1016/j.cell.2021.12.006
CrossRef Google Scholar
|
[9]
|
Liu Y, Yang K, Wei X, Wang X. 2017. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution. New Phytologist 212:730−44 doi: 10.1111/nph.14066
CrossRef Google Scholar
|
[10]
|
Holefors A, Opseth L, Ree Rosnes AK, Ripel L, Snipen L, et al. 2009. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiology and Biochemistry 47:105−15 doi: 10.1016/j.plaphy.2008.11.003
CrossRef Google Scholar
|
[11]
|
Zimin AV, Stevens KA, Crepeau MW, Puiu D, Wegrzyn JL, et al. 2017. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience 6:giw016 doi: 10.1093/gigascience/giw016
CrossRef Google Scholar
|
[12]
|
Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, et al. 2016. Sequence of the sugar pine megagenome. Genetics 204:1613−26 doi: 10.1534/genetics.116.193227
CrossRef Google Scholar
|
[13]
|
Warren RL, Keeling CI, Yuen MM, Raymond A, Taylor GA, et al. 2015. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. The Plant Journal 83:189−212 doi: 10.1111/tpj.12886
CrossRef Google Scholar
|
[14]
|
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497:579−84 doi: 10.1038/nature12211
CrossRef Google Scholar
|
[15]
|
Kosiński G, Giertych M. 1982. Light conditions inside developing buds affect floral induction. Planta 155:93−94 doi: 10.1007/BF00402938
CrossRef Google Scholar
|
[16]
|
Mishra P, Panigrahi KC. 2015. GIGANTEA - an emerging story. Frontiers in Plant Science 6:8 doi: 10.3389/fpls.2015.00008
CrossRef Google Scholar
|
[17]
|
Shim JS, Kubota A, Imaizumi T. 2017. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiology 173:5−15 doi: 10.1104/pp.16.01327
CrossRef Google Scholar
|
[18]
|
Li D, Zhang H, Mou M, Chen Y, Xiang S, et al. 2019. Arabidopsis class II TCP transcription factors integrate with the FT-FD module to control flowering. Plant physiology 181:97−111 doi: 10.1104/pp.19.00252
CrossRef Google Scholar
|
[19]
|
Bendix C, Mendoza JM, Stanley DN, Meeley R, Harmon FG. 2013. The circadian clock-associated gene gigantea1 affects maize developmental transitions. Plant, Cell & Environment 36:1379−90 doi: 10.1111/pce.12067
CrossRef Google Scholar
|
[20]
|
Kubota A, Kita S, Ishizaki K, Nishihama R, Yamato KT, et al. 2014. Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nature Communications 5:3668 doi: 10.1038/ncomms4668
CrossRef Google Scholar
|
[21]
|
Karlgren A, Gyllenstrand N, Källman T, Lagercrantz U. 2013. Conserved Function of Core Clock Proteins in the Gymnosperm Norway Spruce (Picea abies). PLoS One 8:e60110 doi: 10.1371/journal.pone.0060110
CrossRef Google Scholar
|
[22]
|
Jun C, Yoshiaki T, Michael S, Thomas K, Nannan X, et al. 2014. Clinal variation at phenology-related genes in spruce: parallel evolution in FTL2 and Gigantea? Genetics 197:1025−38 doi: 10.1534/genetics.114.163063
CrossRef Google Scholar
|
[23]
|
Olsen JE. 2010. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Molecular Biology 73:37−47 doi: 10.1007/s11103-010-9620-9
CrossRef Google Scholar
|
[24]
|
Eriksson ME, Millar AJ. 2003. The circadian clock. A plant's best friend in a spinning world. Plant Physiology 132:732−38 doi: 10.1104/pp.103.022343
CrossRef Google Scholar
|
[25]
|
Søgaard G, Johnsen Ø, Nilsen J, Junttila O. 2008. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce. Tree Physiology 28:311−20 doi: 10.1093/treephys/28.2.311
CrossRef Google Scholar
|
[26]
|
Nose M, Kurita M, Tamura M, Matsushita M, Hiraoka Y, et al. 2020. Effects of day length- and temperature-regulated genes on annual transcriptome dynamics in Japanese cedar (Cryptomeria japonica D. Don), a gymnosperm indeterminate species. PLoS One 15:e0229843 doi: 10.1371/journal.pone.0229843
CrossRef Google Scholar
|
[27]
|
Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, et al. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040−43 doi: 10.1126/science.1126038
CrossRef Google Scholar
|
[28]
|
Bowe LM, Coat G, dePamphilis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. PNAS 97:4092−97 doi: 10.1073/pnas.97.8.4092
CrossRef Google Scholar
|
[29]
|
Lagercrantz U. 2009. At the end of the day: a common molecular mechanism for photoperiod responses in plants. Journal of Experimental Botany 60:2501−15 doi: 10.1093/jxb/erp139
CrossRef Google Scholar
|
[30]
|
Gyllenstrand N, Clapham D, Källman T, Lagercrantz U. 2007. A Norway Spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiology 144:248−57 doi: 10.1104/pp.107.095802
CrossRef Google Scholar
|
[31]
|
Asante DKA, Yakovlev IA, Fossdal CG, Holefors A, Opseth L, et al. 2011. Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant, Cell & Environment 34:332−46 doi: 10.1111/j.1365-3040.2010.02247.x
CrossRef Google Scholar
|
[32]
|
Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O. 2012. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytologist 196:1260−73 doi: 10.1111/j.1469-8137.2012.04332.x
CrossRef Google Scholar
|
[33]
|
Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES. 2006. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. The Plant Journal 46:183−92 doi: 10.1111/j.1365-313X.2006.02686.x
CrossRef Google Scholar
|
[34]
|
Searle I, He Y, Turck F, Vincent C, Fornara F, et al. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development 20:898−912 doi: 10.1101/gad.373506
CrossRef Google Scholar
|
[35]
|
Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G. 2002. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal 21:4327−37 doi: 10.1093/emboj/cdf432
CrossRef Google Scholar
|
[36]
|
Wan T, Liu Z, Li L, Leitch AR, Leitch IJ, et al. 2018. A genome for gnetophytes and early evolution of seed plants. Nature Plants 4:82−89 doi: 10.1038/s41477-017-0097-2
CrossRef Google Scholar
|
[37]
|
Zhang H, Cui X, Guo Y, Luo C, Zhang L. 2018. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. Plant Molecular Biology 98:471−93 doi: 10.1007/s11103-018-0792-z
CrossRef Google Scholar
|
[38]
|
Fu D, Dunbar M, Dubcovsky J. 2007. Wheat VIN3-like PHD finger genes are up-regulated by vernalization. Molecular Genetics and Genomics 277:301−13 doi: 10.1007/s00438-006-0189-6
CrossRef Google Scholar
|
[39]
|
André D, Marcon A, Lee KC, Goretti D, Zhang B E. et al. 2022. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Current Biology 32:2988−96 doi: 10.1016/j.cub.2022.05.023
CrossRef Google Scholar
|
[40]
|
Chiang CM, Viejo M, Aas OT, Hobrak KT, Stromme CB, et al. 2021. Interactive effects of light quality during day extension and temperature on bud set, bud burst and PaFTL2, PaCOL1-2 and PaSOC1 expression in Norway Spruce (Picea abies (L.) Karst.). Forests 12:337 doi: 10.3390/f12030337
CrossRef Google Scholar
|
[41]
|
Heide OM. 1974. Growth and dormancy in Norway Spruce ecotypes (Picea abies) Interaction of photoperiod and temperature. Physiology Plantarum 30:1−12 doi: 10.1111/j.1399-3054.1974.tb04983.x
CrossRef Google Scholar
|
[42]
|
Hamilton JA, El Kayal W, Hart AT, Runcie DE, Arango-Velez A, et al. 2016. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Tree Physiology 36:1432−48 doi: 10.1093/treephys/tpw061
CrossRef Google Scholar
|
[43]
|
Michaels SD, Amasino RM. 2001. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. The Plant Cell 13:935−941 doi: 10.1105/tpc.13.4.935
CrossRef Google Scholar
|
[44]
|
Feng W, Jacob Y, Veley KM, Ding L, Yu X, et al. 2011. Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C. Plant Physiology 155:1425−34 doi: 10.1104/pp.110.167817
CrossRef Google Scholar
|
[45]
|
Hornyik C, Terzi LC, Simpson GG. 2010. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Developmental Cell 18:203−13 doi: 10.1016/j.devcel.2009.12.009
CrossRef Google Scholar
|
[46]
|
Pascual MB, Canovas FM and Avila C. 2015. The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biology 15:254 doi: 10.1186/s12870-015-0640-0
CrossRef Google Scholar
|
[47]
|
Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U. 2013. FLOWERING LOCUS T/TERMINAL FLOWER1-Like genes affect growth rhythm and bud set in Norway Spruce. Plant Physiology 163:792−803 doi: 10.1104/pp.113.224139
CrossRef Google Scholar
|
[48]
|
Avia K, Kärkkäinen K, Lagercrantz U, Savolainen O. 2014. Association of FLOWERING LOCUS T/TERMINAL FLOWER 1-like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris). New Phytologist 204:159−70 doi: 10.1111/nph.12901
CrossRef Google Scholar
|
[49]
|
Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, et al. 2011. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiology 156:1967−77 doi: 10.1104/pp.111.176206
CrossRef Google Scholar
|
[50]
|
Moyroud E, Kusters E, Monniaux M, Koes R, Parcy F. 2010. LEAFY blossoms. Trends in Plant Science 15:346−52 doi: 10.1016/j.tplants.2010.03.007
CrossRef Google Scholar
|
[51]
|
Vázquez-Lobo A, Carlsbecker A, Vergara-Silva F, Alvarez-Buylla ER, Piñero D, et al. 2007. Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms. Evolution & Development 9:446−59 doi: 10.1111/j.1525-142x.2007.00182.x
CrossRef Google Scholar
|
[52]
|
Frohlich MW, Parker DS. 2000. The mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany 25:155−70 doi: 10.2307/2666635
CrossRef Google Scholar
|
[53]
|
Mellerowicz EJ, Horgan K, Walden A, Coker A, Walter C. 1998. PRFLL - A Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undi erentiated male cone primordia. Planta 206:619−29 doi: 10.1007/s004250050440
CrossRef Google Scholar
|
[54]
|
Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, et al. 1998. NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. PNAS 95:6537−42 doi: 10.1073/pnas.95.11.6537
CrossRef Google Scholar
|
[55]
|
Shiokawa T, Yamada S, Futamura N, Osanai K, Murasugi D, et al. 2008. Isolation and functional analysis of the CjNdly gene, a homolog in Cryptomeria japonica of FLORICAULA/LEAFY genes. Tree Physiology 28:21−28 doi: 10.1093/treephys/28.1.21
CrossRef Google Scholar
|
[56]
|
Dornelas MC, Rodriguez APM. 2005. A FLORICAULA/LEAFY gene homolog is preferentially expressed in developing female cones of the tropical pine Pinus caribaea var. caribaea. Genetics and Molecular Biology 2:299−307 doi: 10.1590/s1415-47572005000200021
CrossRef Google Scholar
|
[57]
|
Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P. 2004. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). The Plant Journal 40:546−557 doi: 10.1111/j.1365-313X.2004.02226.x
CrossRef Google Scholar
|
[58]
|
Carlsbecker A, Sundström JF, Englund M, Uddenberg D, Izquierdo L, et al. 2013. Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs. New Phytologist 200:261−75 doi: 10.1111/nph.12360
CrossRef Google Scholar
|
[59]
|
Niu S, Yuan H, Sun X, Porth I, Li Y, et al. 2016. A transcriptomics investigation into pine reproductive organ development. New Phytologist 209:1278−89 doi: 10.1111/nph.13680
CrossRef Google Scholar
|
[60]
|
Zhang P, Tan HTW, Pwee HK, Kumar PP. 2004. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. The Plant Journal 37:566−77 doi: 10.1046/j.1365-313X.2003.01983.x
CrossRef Google Scholar
|
[61]
|
Winter KU, Saedler H, Theißen G. 2002. On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. The Plant Journal 4:457−75 doi: 10.1046/j.1365-313x.2002.01375.x
CrossRef Google Scholar
|
[62]
|
Moyroud E, Monniaux M, Thévenon E, Dumas R, Scutt CP, et al. 2017. A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. New Phytologist 216:469−81 doi: 10.1111/nph.14483
CrossRef Google Scholar
|
[63]
|
Albani MC, Coupland G. 2010. Comparative analysis of flowering in annual and perennial plants. In Current Topics in Developmental Biology, ed. Timmermans MCP. Vol. 91. UK: Academic Press, Elsevier. pp. 323−48. https://doi.org/10.1016/S0070-2153(10)91011-9
|
[64]
|
Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordström KJ, Wang R, et al. 2013. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1094−97 doi: 10.1126/science.1234116
CrossRef Google Scholar
|
[65]
|
Nodine MD, Bartel DP. 2010. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes & Development 24:2678−92 doi: 10.1101/gad.1986710
CrossRef Google Scholar
|
[66]
|
Wötzel S, Andrello M, Albani MC, Koch MA, Coupland G, et al. 2022. Arabis alpina: A perennial model plant for ecological genomics and life-history evolution. Molecular Ecology Resources 22:468−86 doi: 10.1111/1755-0998.13490
CrossRef Google Scholar
|
[67]
|
Albani MC, Castaings L, Wötzel S, Mateos JL, Wunder J, et al. 2012. PEP1 of Arabis alpina is encoded by two overlapping genes that contribute to natural genetic variation in perennial flowering. PLoS Genetics 8:e1003130 doi: 10.1371/journal.pgen.1003130
CrossRef Google Scholar
|
[68]
|
Wang R, Farrona S, Vincent C, Joecker A, Schoof H, et al. 2009. PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423−27 doi: 10.1038/nature07988
CrossRef Google Scholar
|
[69]
|
Wu G, Park MY, Conway SR, Wang J, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59 doi: 10.1016/j.cell.2009.06.031
CrossRef Google Scholar
|
[70]
|
Zhang Q, Li J, Sang Y, Xing S, Wu Q, et al. 2015. Identification and characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak. PLoS One 10:e0127184 doi: 10.1371/journal.pone.0127184
CrossRef Google Scholar
|
[71]
|
Niu S, Liu C, Yuan HW, Li P, Li Y, et al. 2015. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis. BMC Genomics 1:693 doi: 10.1186/s12864-015-1885-6
CrossRef Google Scholar
|
[72]
|
Akhter S, Westrin KJ, Zivi N, Nordal V, Kretzschmar WW, et al. 2022. Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway. New Phytologist 236:1951−63 doi: 10.1111/nph.18449
CrossRef Google Scholar
|
[73]
|
Zhang M, Chen Y, Jin X, Cai Y, Yuan Y, et al. 2019. New different origins and evolutionary processes of AP2/EREBP transcription factors in Taxus chinensis. BMC Plant Biology 19:413 doi: 10.1186/s12870-019-2044-z
CrossRef Google Scholar
|
[74]
|
Nilsson L, Carlsbecker A, Sundås-Larsson A, Vahala T. 2007. APETALA2-like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta 225:589−602 doi: 10.1007/s00425-006-0374-1
CrossRef Google Scholar
|
[75]
|
Shigyo M, Hasebe M, Ito M. 2006. Molecular evolution of the AP2 subfamily. Gene 366:256−65 doi: 10.1016/j.gene.2005.08.009
CrossRef Google Scholar
|
[76]
|
Mouradov A, Glassick TV, Hamdorf BA, Murphy LC, Marla SS, et al. 1998. Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine. Plant Physiology 117:55−62 doi: 10.1104/pp.117.1.55
CrossRef Google Scholar
|
[77]
|
Xiang W, Li W, Zhang S, Qi L. 2019. Transcriptome-wide analysis to dissect the transcription factors orchestrating the phase change from vegetative to reproductive development in Larix kaempferi. Tree Genetics & Genomes 15:681−89 doi: 10.1007/s11295-019-1376-z
CrossRef Google Scholar
|
[78]
|
Chen F, Zhang X, Liu X, Zhang L. 2017. Evolutionary analysis of MIKCc-Type MADS-box genes in gymnosperms and angiosperms. Frontiers in Plant Science 8:895 doi: 10.3389/fpls.2017.00895
CrossRef Google Scholar
|
[79]
|
Akhter S, Kretzschmar W, Nordal V, Delhomme N, Street NR, et al. 2018. Integrative analysis of three RNA sequencing methods identifies mutually exclusive exons of MADS-box isoforms during early bud development in Picea abies. Frontiers in Plant Science 9:1625 doi: 10.3389/fpls.2018.01625
CrossRef Google Scholar
|
[80]
|
Uddenberg D, Reimegård J, Clapham D, Almqvist C, von Arnold S, et al. 2013. Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS-box transcription factor. Plant Physiology 161:813−23 doi: 10.1104/pp.112.207746
CrossRef Google Scholar
|
[81]
|
Chen X, Zhu Q, NieY, Han F, Li Y, et al. 2021. Determination of conifer age biomarker DAL1 interactome using Y2H-seq. Forestry Research 1:12 doi: 10.48130/fr-2021-0012
CrossRef Google Scholar
|
[82]
|
Bao S, Hua C, Shen L, Yu H. 2020. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology 62:118−131 doi: 10.1111/jipb.12892
CrossRef Google Scholar
|
[83]
|
Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68:2013−2037 doi: 10.1007/s00018-011-0673-y
CrossRef Google Scholar
|
[84]
|
Achard P, Herr A, Baulcombe DC, Harberd NP. 2004. Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357−65 doi: 10.1242/dev.01206
CrossRef Google Scholar
|
[85]
|
Yu S, Galvão VC, Zhang Y, Horrer D, Zhang T, et al. 2012. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE Transcription factors. The Plant Cell 24:3320−32 doi: 10.1105/tpc.112.101014
CrossRef Google Scholar
|
[86]
|
Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell 10:791−800 doi: 10.1105/tpc.10.5.791
CrossRef Google Scholar
|
[87]
|
Schwechheimer C, Willige BC. 2009. Shedding light on gibberellic acid signalling. Current Opinion in Plant Biology 12:57−62 doi: 10.1016/j.pbi.2008.09.004
CrossRef Google Scholar
|
[88]
|
de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, et al. 2008. A molecular framework for light and Gibberellin control of cell elongation. Nature 451:480−84 doi: 10.1038/nature06520
CrossRef Google Scholar
|
[89]
|
Millar AA, Lohe A, Wong G. 2019. Biology and Function of miR159 in Plants. Plants 8:255 doi: 10.3390/plants8080255
CrossRef Google Scholar
|
[90]
|
Rosenberg O, Almqvist C, Weslien J. 2012. Systemic insecticide and Gibberellin reduced cone damage and increased flowering in a spruce seed orchard. Journal of Economic Entomology 105:916−22 doi: 10.1603/EC11388
CrossRef Google Scholar
|
[91]
|
Cecich RA, Kang H, Chalupka W. 1994. Regulation of early flowering in Pinus banksiana. Tree Physiology 14:275−84 doi: 10.1093/treephys/14.3.275
CrossRef Google Scholar
|
[92]
|
Li Y, Li X, Zhao MH, Pang ZY, Wei JT, et al. 2021. An overview of the practices and management methods for enhancing seed production in conifer plantations for commercial use. Horticulturae 7:252 doi: 10.3390/horticulturae7080252
CrossRef Google Scholar
|
[93]
|
Kong L, Von Aderkas P, Irina Zaharia L. 2016. Effects of exogenously applied Gibberellins and Thidiazuron on phytohormone profiles of long-shoot buds and cone gender determination in lodgepole pine. Journal of Plant Growth Regulation 35:172−82 doi: 10.1007/s00344-015-9517-6
CrossRef Google Scholar
|
[94]
|
Niu S, Yuan L, Zhang Y, Chen X, Li W. 2014. Isolation and expression profiles of Gibberellin metabolism genes in developing male and female cones of Pinus tabuliformis. Functional & Integrative Genomics 14:697−705 doi: 10.1007/s10142-014-0387-y
CrossRef Google Scholar
|
[95]
|
Shearer RC, Stoehr MU, Webber JE, Ross SD. 1999. Seed cone production enhanced by injecting 38-year-old Larix occidentalis Nutt. with GA4/7. New Forests 18:289−300 doi: 10.1023/A:1006612506340
CrossRef Google Scholar
|
[96]
|
Pharis RP, Webber JE, Ross SD. 1987. The promotion of flowering in forest trees by gibberellin A47 and cultural treatments: A review of the possible mechanisms. Forest Ecology and Management 19:65−84 doi: 10.1016/0378-1127(87)90012-0
CrossRef Google Scholar
|
[97]
|
Kong L, Aderkas P, Zaharia I, Abrams SR, Lee T, et al. 2012. Analysis of phytohormone profiles during male and female cone initiation and early differentiation in long-shoot buds of lodgepole pine. Journal of Plant Growth Regulation 31:478−89 doi: 10.1007/s00344-011-9257-1
CrossRef Google Scholar
|
[98]
|
Du R, Niu S, Liu Y, Sun X, Porth I, et al. 2017. The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers. Scientific Reports 7:16637 doi: 10.1038/s41598-017-11859-w
CrossRef Google Scholar
|
[99]
|
Katahata S, Futamura N, Igasaki T, Shinohara K. 2014. Functional analysis of SOC1-like and AGL6-likeMADS-box genes of the gymnosperm Cryptomeria japonica. Tree Genetics & Genomes 10:317−27 doi: 10.1007/s11295-013-0686-9
CrossRef Google Scholar
|
[100]
|
Li W, Liu S, Ma J, Liu H, Han F, et al. 2020. Gibberellin signaling is required for far-red light-induced shoot elongation in Pinus tabuliformis seedlings. Plant Physiology 182:658−68 doi: 10.1104/pp.19.00954
CrossRef Google Scholar
|
[101]
|
Street NR. 2019. Genomics of forest trees. In Advances in Botanical Research, ed. Cánovas FM. Vol. 89. UK: Academic Press. pp. 1−37. https://doi.org/10.1016/bs.abr.2018.11.001
|
[102]
|
Poovaiah C, Phillips L, Geddes B, Reeves C, Sorieul M, et al. 2021. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don). BMC Plant Biology 21:363 doi: 10.1186/s12870-021-03143-x
CrossRef Google Scholar
|
[103]
|
Cui Y, Zhao J, Gao Y, Zhao R, Zhang J, et al. 2021. Efficient multi-sites genome editing and plant regeneration via somatic embryogenesis in Picea glauca. Frontiers in Plant Science 12:751891 doi: 10.3389/fpls.2021.751891
CrossRef Google Scholar
|
[104]
|
Elfstrand M, Baison J, Lundén K, Zhou L, Vos I, et al. 2020. Association genetics identifies a specifically regulated Norway spruce laccase gene, PaLAC5, linked to Heterobasidion parviporum resistance. Plant, Cell & Environment 43:1779−91 doi: 10.1111/pce.13768
CrossRef Google Scholar
|
[105]
|
Mukrimin M, Kovalchuk A, Neves LG, Jaber EHA, Haapanen M, et al. 2018. Genome-wide exon-capture approach identifies genetic variants of Norway Spruce genes associated with susceptibility to Heterobasidion parviporum infection. Frontiers in Plant Science 9:793 doi: 10.3389/fpls.2018.00793
CrossRef Google Scholar
|
[106]
|
Di Pierro EA, Mosca E, Rocchini D, Binelli G, Neale DB, et al. 2016. Climate-related adaptive genetic variation and population structure in natural stands of Norway spruce in the South-Eastern Alps. Tree Genetics & Genomes 12:16 doi: 10.1007/s11295-016-0972-4
CrossRef Google Scholar
|
[107]
|
Sena JS, Lachance D, Duval I, Nguyen TTA, Stewart D, et al. 2019. Functional analysis of the PgCesA3 white spruce cellulose synthase gene promoter in secondary xylem. Frontiers in Plant Science 10:626 doi: 10.3389/fpls.2019.00626
CrossRef Google Scholar
|
[108]
|
Lamara M, Parent GJ, Giguère I, Beaulieu J, Bousquet J, et al. 2018. Association genetics of acetophenone defence against spruce budworm in mature white spruce. BMC Plant Biology 18:231 doi: 10.1186/s12870-018-1434-y
CrossRef Google Scholar
|
[109]
|
Calleja-Rodriguez A, Li Z, Hallingbäck HR, Sillanpää MJ, Wu HX, et al. 2019. Analysis of phenotypic- and Estimated Breeding Values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design. Journal of Theoretical Biology 462:283−92 doi: 10.1016/j.jtbi.2018.11.007
CrossRef Google Scholar
|
[110]
|
Li Z, Hallingbäck HR, Abrahamsson S, Fries A, Gull BA, et al. 2014. Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits. G3 Genes|Genomes|Genetics 4:2365−79 doi: 10.1534/g3.114.014068
CrossRef Google Scholar
|
[111]
|
Plomion C, Chancerel E, Endelman J, Lamy JB, Mandrou E, et al. 2014. Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine. BMC Genomics 15:171 doi: 10.1186/1471-2164-15-171
CrossRef Google Scholar
|
[112]
|
Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P. 2012. Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genetics & Genomes 8:113−126 doi: 10.1007/s11295-011-0426-y
CrossRef Google Scholar
|
[113]
|
Telfer E, Graham N, Macdonald L, Li Y, Klápště J, et al. 2019. A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. PLoS One 14:e0222640 doi: 10.1371/journal.pone.0222640
CrossRef Google Scholar
|
[114]
|
Liu JJ, Schoettle AW, Sniezko RA, Yao F, Zamany A, et al. 2019. Limber pine (Pinus flexilis James) genetic map constructed by exome-seq provides insight into the evolution of disease resistance and a genomic resource for genomics-based breeding. The Plant Journal 98:745−58 doi: 10.1111/tpj.14270
CrossRef Google Scholar
|
[115]
|
Han X, Chen Q, Yang Q, Zeng Q, Lan T, et al. 2019. Genome-wide analysis of superoxide dismutase genes inLarix kaempferi. Gene 686:29−36 doi: 10.1016/j.gene.2018.10.089
CrossRef Google Scholar
|
[116]
|
Niu S, Liu S, Ma J, Han F, Li Y, et al. 2019. The transcriptional activity of a temperature-sensitive transcription factor module is associated with pollen shedding time in pine. Tree Physiology 39:1173−1186 doi: 10.1093/treephys/tpz023
CrossRef Google Scholar
|
[117]
|
Ma J, Liu S, Han F, Li W, Li Y, et al. 2020. Comparative transcriptome analyses reveal two distinct transcriptional modules associated with pollen shedding time in pine. BMC Genomics 21:504 doi: 10.1186/s12864-020-06880-9
CrossRef Google Scholar
|
[118]
|
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559 doi: 10.1186/1471-2105-9-559
CrossRef Google Scholar
|
[119]
|
Hakman IC, Arnold S. 1983. Isolation and growth of protoplasts from cell suspensions of Pinus contorta dougl. ex loud. Plant Cell Reports 2:92−94 doi: 10.1007/BF00270174
CrossRef Google Scholar
|
[120]
|
Bekkaoui F, Datla RS, Pilon M, Tautorus TE, Crosby WL, et al. 1990. The effects of promoter on transient expression in conifer cell lines. Theoretical and Applied Genetics 79:353−59 doi: 10.1007/BF01186079
CrossRef Google Scholar
|
[121]
|
Géomez-Maldonado J, Crespillo R, ÉAvila C, Céanovas FM. 2001. Efficient preparation of maritime pine (Pinus pinaster) protoplasts suitable for transgene expression analysis. Plant Molecular Biology Reporter 19:361−66 doi: 10.1007/BF02772834
CrossRef Google Scholar
|
[122]
|
Guo Y, Song X, Zhao S, Lv J, Lu M. 2015. A transient gene expression system in Populus euphratica Oliv. protoplasts prepared from suspension cultured cells. Acta Physiologiae Plantarum 37:160 doi: 10.1007/s11738-015-1906-8
CrossRef Google Scholar
|
[123]
|
Liang Z, Zong Y, Gao C. 2016. An efficient targeted mutagenesis system using CRISPR/Cas in monocotyledons. Current Protocols in Plant Biology 1:329−44 doi: 10.1002/cppb.20021
CrossRef Google Scholar
|
[124]
|
Liu Z, Wu Y, Yang F, Zhang Y, Chen S, et al. 2013. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. PNAS 110:6205−10 doi: 10.1073/pnas.1215543110
CrossRef Google Scholar
|
[125]
|
Denyer T, Timmermans MCP. 2022. Crafting a blueprint for single-cell RNA sequencing. Trends in Plant Science 27:92−103 doi: 10.1016/j.tplants.2021.08.016
CrossRef Google Scholar
|
[126]
|
Denyer T, Timmermans MCP. 2022. High-throughput single-cell RNA sequencing. Trends in Plant Science 27:104−105 doi: 10.1016/j.tplants.2021.09.003
CrossRef Google Scholar
|
[127]
|
Liu S, Ma J, Liu H, Guo Y, Li W, et al. 2020. An efficient system for Agrobacterium-mediated transient transformation in Pinus tabuliformis. Plant Methods 16:52 doi: 10.1186/s13007-020-00594-5
CrossRef Google Scholar
|
[128]
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11 doi: 10.48130/fr-2022-0011
CrossRef Google Scholar
|
[129]
|
Lin YH, Li W, Sun YH, Kumari S, Wei H, et al. 2013. SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. The Plant Cell 25:4324−41 doi: 10.1105/tpc.113.117697
CrossRef Google Scholar
|
[130]
|
Wei H. 2019. Construction of a hierarchical gene regulatory network centered around a transcription factor. Briefings in Bioinformatics 20:1021−31 doi: 10.1093/bib/bbx152
CrossRef Google Scholar
|
[131]
|
Meng D, Yang Q, Dong B, Song Z, Niu L, Wang L, et al. 2019. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. Plant Biotechnology Journal 17:1804−13 doi: 10.1111/pbi.13101
CrossRef Google Scholar
|
[132]
|
Bao W, Wang J, Wang Q, O'Hare D, Wan Y. 2016. Layered double hydroxide Nanotransporter for molecule delivery to intact plant cells. Science Reports 6:26738 doi: 10.1038/srep26738
CrossRef Google Scholar
|
[133]
|
Hasanzadeh A, Radmanesh F, Hosseini ES, Hashemzadeh I, Kiani, J, et al. 2021. Highly photoluminescent Nitrogen- and Zinc-doped carbon dots for efficient delivery of CRISPR/Cas9 and mRNA. Bioconjugate Chemistry 32:1875−87 doi: 10.1021/acs.bioconjchem.1c00309
CrossRef Google Scholar
|