[1]
|
Dellaporta SL, Calderon-Urrea A. 1993. Sex determination in flowering plants. The Plant Cell 5:1241−51 doi: 10.1105/tpc.5.10.1241
CrossRef Google Scholar
|
[2]
|
Charlesworth D. 2002. Plant sex determination and sex chromosomes. Heredity 88:94−101 doi: 10.1038/sj.hdy.6800016
CrossRef Google Scholar
|
[3]
|
Charlesworth D, Charlesworth B, Marais G. 2005. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118−28 doi: 10.1038/sj.hdy.6800697
CrossRef Google Scholar
|
[4]
|
Spigler RB, Lewers KS, Main DS, Ashman TL. 2008. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101:507−17 doi: 10.1038/hdy.2008.100
CrossRef Google Scholar
|
[5]
|
Charlesworth D. 2013. Plant sex chromosome evolution. Journal of Experimental Botany 64:405−20 doi: 10.1093/jxb/ers322
CrossRef Google Scholar
|
[6]
|
Villarreal JC, Renner SS. 2013. Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evolutionary Biology 13:239 doi: 10.1186/1471-2148-13-239
CrossRef Google Scholar
|
[7]
|
Walas Ł, Mandryk W, Thomas PA, Tyrała-Wierucka Ż, Iszkuło G. 2018. Sexual systems in gymnosperms: a review. Basic and Applied Ecology 31:1−9 doi: 10.1016/j.baae.2018.05.009
CrossRef Google Scholar
|
[8]
|
Renner SS. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101:1588−96 doi: 10.3732/ajb.1400196
CrossRef Google Scholar
|
[9]
|
Vannozzi A, Palumbo F, Lucchin M, Barcaccia G. 2022. Dioecy in flowering plants: From the first observations of prospero alpini in the XVI century to the most recent advances in the genomics era. Agriculture 12:364 doi: 10.3390/agriculture12030364
CrossRef Google Scholar
|
[10]
|
Diggle PK, Di Stilio VS, Gschwend AR, Golenberg EM, Moore RC, et al. 2011. Multiple developmental processes underlie sex differentiation in angiosperms. Trends in Genetics 27:368−76 doi: 10.1016/j.tig.2011.05.003
CrossRef Google Scholar
|
[11]
|
Kubo KI, Entani T, Takara A, Wang N, Fields AM, et al. 2010. Collaborative non-self recognition system in S-RNase–based self-incompatibility. Science 330:796−99 doi: 10.1126/science.1195243
CrossRef Google Scholar
|
[12]
|
Nettancourt D. 2001. Incompatibility and incongruity in wild and cultivated plants. Heidelberg: Springer Berlin. pp. 262−63. https://doi.org/10.1007/978-3-662-04502-2
|
[13]
|
Charlesworth B. 2002. The evolution of chromosomal sex determination. In The Genetics and Biology of Sex Determination: Novartis Foundation Symposium 244, eds. Chadwick D, Goode J. England: JohnWiley & Sons. 244: 207−19. https://doi.org/10.1002/0470868732.ch17
|
[14]
|
Fruchard C, Marais GAB. 2021. The evolution of sex determination in plants. In Evolutionary Developmental Biology, eds. Nuño de la Rosa L, Müller, GB. Switherland: Springer Cham. pp. 683−96. https://doi.org/10.1007/978-3-319-32979-6_168
|
[15]
|
Cronk Q, Müller NA. 2020. Default sex and single gene sex determination in dioecious plants. Frontiers in Plant Science 11:1162 doi: 10.3389/fpls.2020.01162
CrossRef Google Scholar
|
[16]
|
Charlesworth B, Charlesworth D. 1978. A Model for the Evolution of Dioecy and Gynodioecy. The American Naturalist 112:975−97 doi: 10.1086/283342
CrossRef Google Scholar
|
[17]
|
Caruso CM, Eisen K, Case AL. 2016. An angiosperm-wide analysis of the correlates of gynodioecy. International Journal of Plant Sciences 177:115−21 doi: 10.1086/684260
CrossRef Google Scholar
|
[18]
|
Saumitou-Laprade P, Vernet P, Vassiliadis P, Hoareau Y, Magny GD, et al. 2010. A self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327:1648−50 doi: 10.1126/science.1186687
CrossRef Google Scholar
|
[19]
|
Käfer J, Marais GAB, Pannell JR. 2017. On the rarity of dioecy in flowering plants. Molecular Ecology 26:1225−41 doi: 10.1111/mec.14020
CrossRef Google Scholar
|
[20]
|
She H, Xu Z, Zhang H, Li G, Wu J, et al. 2021. Identification of a male-specific region (MSR) in Spinacia oleracea. Horticultural Plant Journal 7:341−46 doi: 10.1016/j.hpj.2021.01.003
CrossRef Google Scholar
|
[21]
|
Slancarova V, Zdanska J, Janousek B, Talianova M, Zschach C, et al. 2013. Evolution of sex determination systems with heterogametic males and females in Silene. Evolution 67:3669−77 doi: 10.1111/evo.12223
CrossRef Google Scholar
|
[22]
|
Xue L, Wu H, Chen Y, Li X, Hou J, et al. 2020. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nature Communications 11:5893 doi: 10.1038/s41467-020-19559-2
CrossRef Google Scholar
|
[23]
|
Gallien L. Sex determination, in The cell. 1959. Elsevier. p. 399−436.
|
[24]
|
Chawla A, Stobdan T, Srivastava RB, Jaiswal V, Chauhan RS, et al. 2015. Sex-biased temporal gene expression in male and female floral buds of seabuckthorn (Hippophae rhamnoides). PloS One 10:e0124890 doi: 10.1371/journal.pone.0124890
CrossRef Google Scholar
|
[25]
|
Siljak-Yakovlev S, Cerbah M, Sarr A, Benmalek S, Bounaga N, et al. 1996. Chromosomal sex determination and heterochromatin structure in date palm. Sexual Plant Reproduction 9:127−32 doi: 10.1007/BF02221391
CrossRef Google Scholar
|
[26]
|
Ainsworth C. 2000. Boys and girls come out to play: the molecular biology of dioecious plants. Annals of Botany 86:211−21 doi: 10.1006/anbo.2000.1201
CrossRef Google Scholar
|
[27]
|
Marks RA, Smith JJ, Cronk Q, Grassa CJ. McLetchie DN. 2019. Genome of the tropical plant Marchantia inflexa: implications for sex chromosome evolution and dehydration tolerance. Scientific reports 9:1−13 doi: 10.1038/s41598-019-45039-9
CrossRef Google Scholar
|
[28]
|
Furman BLS, Metzger DCH, Darolti I, Wright AE, Sandkam BA, et al. 2020. Sex chromosome evolution: so many exceptions to the rules. Genome biology and evolution 12:750−63 doi: 10.1093/gbe/evaa081
CrossRef Google Scholar
|
[29]
|
Zrzavá M, Hladová I, Dalíková M, Šíchová J, Õunap E, et al. 2018. Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata. Genes 9:279 doi: 10.3390/genes9060279
CrossRef Google Scholar
|
[30]
|
Iwasaki M, Kajiwara T, Yasui Y, Yoshitake Y, Miyazaki M, et al. 2021. Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Current Biology 31:5522−5532.E7 doi: 10.1016/j.cub.2021.10.023
CrossRef Google Scholar
|
[31]
|
Lan T, Chen R, Li X, Dong F, Qi Y, et al. 2008. Microdissection and painting of the W chromosome in Ginkgo biloba showed different labelling patterns. Botanical Studies 49:33−37
Google Scholar
|
[32]
|
Zhang H, Zhang R, Yang X, Gu KJ, Chen W, et al. 2019. Recent origin of an XX/XY sex-determination system in the ancient plant lineage Ginkgo biloba. BioRxiv Preprint doi: 10.1101/517946
CrossRef Google Scholar
|
[33]
|
Liao Q, Du R, Gou J, Guo L, Shen H, et al. 2020. The genomic architecture of the sex-determining region and sex-related metabolic variation in Ginkgo biloba. The Plant Journal 104:1399−409 doi: 10.1111/tpj.15009
CrossRef Google Scholar
|
[34]
|
Tennessen JA, Wei N, Straub SCK, Govindarajulu R, Liston A, et al. 2018. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biology 16:e2006062 doi: 10.1371/journal.pbio.2006062
CrossRef Google Scholar
|
[35]
|
Qian W, Fan G, Liu D, Zhang H, Wang X, et al. 2017. Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq). BMC Genomics 18:276 doi: 10.1186/s12864-017-3659-9
CrossRef Google Scholar
|
[36]
|
Zluvova J, Nicolas M, Berger A, Negrutiu L, Monéger F. 2006. Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia. PNAS 103:18854−59 doi: 10.1073/pnas.0606622103
CrossRef Google Scholar
|
[37]
|
Cegan R, Marais GA, Kubekova H, Blavet N, Widmer A, et al. 2010. Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC Plant Biology 10:180 doi: 10.1186/1471-2229-10-180
CrossRef Google Scholar
|
[38]
|
Torres MF, Mathew LS, Ahmed I, Al-Azwani IK, Krueger R, et al. 2018. Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. Nature Communications 9:3969 doi: 10.1038/s41467-018-06375-y
CrossRef Google Scholar
|
[39]
|
Akagi T, Henry IM, Ohtani H, Morimoto T, Beppu K, et al. 2018. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. The Plant Cell 30:780−95 doi: 10.1105/tpc.17.00787
CrossRef Google Scholar
|
[40]
|
Akagi T, Pilkington SM, Varkonyi-Gasic V, Henry IM, Sugano SS, et al. 2019. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nature Plants 5:801−9 doi: 10.1038/s41477-019-0489-6
CrossRef Google Scholar
|
[41]
|
Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, et al. 2017. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nature Communications 8:1279 doi: 10.1038/s41467-017-01064-8
CrossRef Google Scholar
|
[42]
|
Harkess A, Huang K, van der Hulst R, Tissen B, Caplan JL, et al. 2020. Sex determination by two Y-linked genes in garden asparagus. The Plant Cell 32:1790−96 doi: 10.1105/tpc.19.00859
CrossRef Google Scholar
|
[43]
|
Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, et al. 2020. The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genetics 16:e1008566 doi: 10.1371/journal.pgen.1008566
CrossRef Google Scholar
|
[44]
|
Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, et al. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135−38 doi: 10.1038/nature08498
CrossRef Google Scholar
|
[45]
|
Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, et al. 2015. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350:688−91 doi: 10.1126/science.aac8370
CrossRef Google Scholar
|
[46]
|
Zhang S, Tan FQ, Chung CH, Slavkovic F, Devani RS, et al. 2022. The control of carpel determinacy pathway leads to sex determination in cucurbits. Science 378:543−49 doi: 10.1126/science.add4250
CrossRef Google Scholar
|
[47]
|
Lee CY, Lin HJ, Viswanath KK, Lin CP, Chang BCH, et al. 2018. The development of functional mapping by three sex-related loci on the third whorl of different sex types of Carica papaya L. PloS One 13:e0194605 doi: 10.1371/journal.pone.0194605
CrossRef Google Scholar
|
[48]
|
Aryal R, Ming R. 2014. Sex determination in flowering plants: papaya as a model system. Plant Science 217:56−62 doi: 10.1016/j.plantsci.2013.10.018
CrossRef Google Scholar
|
[49]
|
Liu J, Chen LY, Zhou P, Liao Z, Lin H, et al. 2021. Sex biased expression of hormone related genes at early stage of sex differentiation in papaya flowers. Horticulture Research 8:147 doi: 10.1038/s41438-021-00581-4
CrossRef Google Scholar
|
[50]
|
Jia HM, Jia HJ, Cai QL, Wang Y, Zhao HB, et al. 2019. The red bayberry genome and genetic basis of sex determination. Plant Biotechnology Journal 17:397−409 doi: 10.1111/pbi.12985
CrossRef Google Scholar
|
[51]
|
Prentout D, Razumova O, Rhoné B, Badouin H, Henri H, et al. 2020. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Research 30:164−72 doi: 10.1101/gr.251207.119
CrossRef Google Scholar
|
[52]
|
Massonnet M, Cochetel N, Minio A, Vondras AM, Lin J, et al. 2020. The genetic basis of sex determination in grapes. Nature Communications 11:2902 doi: 10.1038/s41467-020-16700-z
CrossRef Google Scholar
|
[53]
|
Bräutigam K, Soolanayakanahally R, Champigny M, Mansfield S, Douglas C, et al. 2017. Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera. Scientific Reports 7:45388 doi: 10.1038/srep45388
CrossRef Google Scholar
|
[54]
|
Müller NA, Kersten B, Leite Montalvão AP, Mähler N, Bernhardsson C, et al. 2020. A single gene underlies the dynamic evolution of poplar sex determination. Nature plants 6:630−37 doi: 10.1038/s41477-020-0672-9
CrossRef Google Scholar
|
[55]
|
Seefelder S, Ehrmaier H, Schweizer G, Seigner E. 2000. Male and female genetic linkage map of hops, Humulus lupulus. Plant Breeding 119:249−55 doi: 10.1046/j.1439-0523.2000.00469.x
CrossRef Google Scholar
|
[56]
|
Li W, Wu H, Li X, Chen Y, Yin T. 2020. Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix. Horticulture Research 7:64 doi: 10.1038/s41438-020-0289-1
CrossRef Google Scholar
|
[57]
|
Zhou R, Macaya-Sanz D, Carlson CH, Schmutz J, Jenkins JW, et al. 2020. A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biology 21:38 doi: 10.1186/s13059-020-1952-4
CrossRef Google Scholar
|
[58]
|
Bergero R, Qiu S, Charlesworth D. 2015. Gene loss from a plant sex chromosome system. Current Biology 25:1234−40 doi: 10.1016/j.cub.2015.03.015
CrossRef Google Scholar
|
[59]
|
Bergero R, Qiu S, Forrest A, Borthwick H. Charlesworth D. 2013. Expansion of the pseudo-autosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics 194:673−86 doi: 10.1534/genetics.113.150755
CrossRef Google Scholar
|
[60]
|
Veltsos P, Ridout KE, Toups MA, González-Martínez SC, Muyle A, et al. 2019. Early sex-chromosome evolution in the diploid dioecious plant Mercurialis annua. Genetics 212:815−35 doi: 10.1534/genetics.119.302045
CrossRef Google Scholar
|
[61]
|
Jordan CY, Charlesworth D. 2012. The potential for sexually antagonistic polymorphism in different genome regions. Evolution 66:505−16 doi: 10.1111/j.1558-5646.2011.01448.x
CrossRef Google Scholar
|
[62]
|
Ponnikas S, Sigeman H, Abbott JK, Hansson B. 2018. Why do sex chromosomes stop recombining. Trends in Genetics 34:492−503 doi: 10.1016/j.tig.2018.04.001
CrossRef Google Scholar
|
[63]
|
Pilkington SM, Tahir J, Hilario E, Gardiner SE, Chagné D, et al. 2019. Genetic and cytological analyses reveal the recombination landscape of a partially differentiated plant sex chromosome in kiwifruit. BMC Plant Biology 19:172 doi: 10.1186/s12870-019-1766-2
CrossRef Google Scholar
|
[64]
|
Bachtrog D, Hom E, Wong KM, Maside X. de Jong P. 2008. Genomic degradation of a young Y chromosome in Drosophila miranda. Genome Biology 9:1−10 doi: 10.1186/gb-2008-9-2-r30
CrossRef Google Scholar
|
[65]
|
Gu L, Walters JR. 2017. Evolution of sex chromosome dosage compensation in animals: a beautiful theory, undermined by facts and bedeviled by details. Genome Biology and Evolution 9:2461−76 doi: 10.1093/gbe/evx154
CrossRef Google Scholar
|
[66]
|
Gschwend AR, Yu Q, Tong EJ, Zeng F, Han J, et al. 2012. Rapid divergence and expansion of the X chromosome in papaya. PNAS 109:13716−21 doi: 10.1073/pnas.1121096109
CrossRef Google Scholar
|
[67]
|
Ming R, Bendahmane A, Renner SS. 2011. Sex chromosomes in land plants. Annual Review of Plant Biology 62:485−514 doi: 10.1146/annurev-arplant-042110-103914
CrossRef Google Scholar
|
[68]
|
Li S, Lv C, Lan L, Jiang K, Zhang Y, et al. 2021. DNA methylation is involved in sexual differentiation and sex chromosome evolution in the dioecious plant garden asparagus. Horticulture Research 8:198 doi: 10.1038/s41438-021-00633-9
CrossRef Google Scholar
|
[69]
|
Zhang H, Lang Z, Zhu JK. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology 19:489−506 doi: 10.1038/s41580-018-0016-z
CrossRef Google Scholar
|
[70]
|
Yang H, Chang F, You C, Cui J, Zhu G, et al. 2015. Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. The Plant Journal 81:268−81 doi: 10.1111/tpj.12726
CrossRef Google Scholar
|
[71]
|
Rodríguez Lorenzo JL, Hobza R, Vyskot B. 2018. DNA methylation and genetic degeneration of the Y chromosome in the dioecious plant Silene latifolia. BMC Genomics 19:540 doi: 10.1186/s12864-018-4936-y
CrossRef Google Scholar
|
[72]
|
Lai YS, Zhang X, Zhang W, Shen D, Wang H, et al. 2017. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. Journal of Experimental Botany 68:2899−912 doi: 10.1093/jxb/erx144
CrossRef Google Scholar
|
[73]
|
Charlesworth D. 2021. When and how do sex-linked regions become sex chromosomes. Evolution 75:569−81 doi: 10.1111/evo.14196
CrossRef Google Scholar
|
[74]
|
Galun E. 1962. Study of the inheritance of sex expression in the cucumber. The interaction of major genes with modifying genetic and non-genetic factors. Genetica 32:134−63 doi: 10.1007/BF01816091
CrossRef Google Scholar
|
[75]
|
Kubicki B. 1969. Investigations on sex determination in cucumber (Cucumis sativus L.). III. Variability of sex expresion in the monoecious and gynoecious lines. Genetica Polonica 10:3−22
Google Scholar
|
[76]
|
Robinson RW, Munger HM, Whitaker TW, Bohn GW. 1976. Genes of the Cucurbitaceae. HortScience 11:554−68 doi: 10.21273/hortsci.11.6.554
CrossRef Google Scholar
|
[77]
|
Trebitsh T, Staub JE, O'Neill SD. 1997. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiology 113:987−95 doi: 10.1104/pp.113.3.987
CrossRef Google Scholar
|
[78]
|
Li Z, Huang S, Liu S, Pan J, Zhang Z, et al. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381−85 doi: 10.1534/genetics.109.104737
CrossRef Google Scholar
|
[79]
|
Van Buren R, Zeng F, Chen C, Zhang J, Wai CM, et al. 2015. Origin and domestication of papaya Yh chromosome. Genome Research 25:524−33 doi: 10.1101/gr.183905.114
CrossRef Google Scholar
|
[80]
|
Zhou P, Zhang X, Ma X, Yue J, Liao Z, et al. 2022. Methylation related genes affect sex differentiation in dioecious and gynodioecious papaya. Horticulture research 9:uhab065 doi: 10.1093/hr/uhab065
CrossRef Google Scholar
|
[81]
|
Zhou G, Yin H, Chen F, Wang Y, Gao Q, et al. 2022. The genome of Areca catechu provides insights into sex determination of monoecious plants. New Phytologist 236:2327−43 doi: 10.1111/nph.18471
CrossRef Google Scholar
|
[82]
|
Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, et al. 2009. A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371 doi: 10.1186/1471-2164-10-371
CrossRef Google Scholar
|
[83]
|
Sanderson BJ, Feng G, Hu N, Carlson CH, Smart LB, et al. 2021. Sex determination through X–Y heterogamety in Salix nigra. Heredity 126:630−39 doi: 10.1038/s41437-020-00397-3
CrossRef Google Scholar
|
[84]
|
Wang D, Li Y, Li M, Yang W, Ma X, et al. 2022. Repeated turnovers keep sex chromosomes young in willows. Genome Biology 23:200 doi: 10.1186/s13059-022-02769-w
CrossRef Google Scholar
|
[85]
|
Iocco-Corena P, Chaïb J, Torregrosa L, Mackenzie D, Thomas MR, et al. 2021. VviPLATZ1 is a major factor that controls female flower morphology determination in grapevine. Nature Communications 12:1−10 doi: 10.1038/s41467-021-27259-8
CrossRef Google Scholar
|
[86]
|
Werren JH, Beukeboom LW. 1998. Sex determination, sex ratios, and genetic conflict. Annual Review of Ecology and Systematics 29:233−61 doi: 10.1146/annurev.ecolsys.29.1.233
CrossRef Google Scholar
|
[87]
|
Charlesworth D. 2015. Plant contributions to our understanding of sex chromosome evolution. New Phytologist 208:52−65 doi: 10.1111/nph.13497
CrossRef Google Scholar
|
[88]
|
Akagi T, Henry IM, Tao R, Comai L. 2014. A Y-chromosome − encoded small RNA acts as a sex determinant in persimmons. Science 346:646−50 doi: 10.1126/science.1257225
CrossRef Google Scholar
|
[89]
|
Renner SS. 2016. Pathways for making unisexual flowers and unisexual plants: moving beyond the "two mutations linked on one chromosome" model. American Journal of Botany 103:587−89 doi: 10.3732/ajb.1600029
CrossRef Google Scholar
|
[90]
|
Feng G, Sanderson BJ, Keefover-Ring K, Liu J, Ma T, et al. 2020. Pathways to sex determination in plants: how many roads lead to Rome? Current Opinion in Plant Biology 54:61−68 doi: 10.1016/j.pbi.2020.01.004
CrossRef Google Scholar
|
[91]
|
Díaz J, Álvarez-Buylla ER. 2021. Spatio-temporal dynamics of the patterning of Arabidopsis flower meristem. Frontiers in Plant Science 12:585139 doi: 10.3389/fpls.2021.585139
CrossRef Google Scholar
|
[92]
|
Boavida LC, Silva JP, Feijó JA. 2001. Sexual reproduction in the cork oak (Quercus suber L). II. Crossing intra-and interspecific barriers. Sexual Plant Reproduction 14:143−52 doi: 10.1007/s004970100100
CrossRef Google Scholar
|
[93]
|
Sheppard LA, Brunner AM, Krutovskii KV, Rottmann WH, Skinner JS, et al. 2000. A DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male floral meristems of the two-whorled, unisexual flowers. Plant Physiology 124:627−40 doi: 10.1104/pp.124.2.627
CrossRef Google Scholar
|
[94]
|
Yuan Z, Zhang D. 2015. Roles of jasmonate signalling in plant inflorescence and flower development. Current Opinion in Plant Biology 27:44−51 doi: 10.1016/j.pbi.2015.05.024
CrossRef Google Scholar
|