[1]
|
Gaudinier A, Blackman BK. 2020. Evolutionary processes from the perspective of flowering time diversity. New Phytologist 225:1883−98 doi: 10.1111/nph.16205
CrossRef Google Scholar
|
[2]
|
Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13:627−39 doi: 10.1038/nrg3291
CrossRef Google Scholar
|
[3]
|
Bouché F, Lobet G, Tocquin P, Périlleux C. 2016. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research 44:D1167−D1171 doi: 10.1093/nar/gkv1054
CrossRef Google Scholar
|
[4]
|
Ó'Maoiléidigh DS, Graciet E, Wellmer F. 2014. Gene networks controlling Arabidopsis thaliana flower development. New Phytologist 201:16−30 doi: 10.1111/nph.12444
CrossRef Google Scholar
|
[5]
|
Turck F, Fornara F, Coupland G. 2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology 59:573−94 doi: 10.1146/annurev.arplant.59.032607.092755
CrossRef Google Scholar
|
[6]
|
Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. 2015. Photoperiodic flowering: time measurement mechanisms in leaves. Annual Review of Plant Biology 66:441−64 doi: 10.1146/annurev-arplant-043014-115555
CrossRef Google Scholar
|
[7]
|
Cao S, Luo X, Xu D, Tian X, Song J, et al. 2021. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. New Phytologist 230:1731−45 doi: 10.1111/nph.17276
CrossRef Google Scholar
|
[8]
|
Hill CB, Li C. 2016. Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Frontiers in Plant Science 7:1906 doi: 10.3389/fpls.2016.01906
CrossRef Google Scholar
|
[9]
|
Battey NH. 2000. Aspects of seasonality. Journal of Experimental Botany 51:1769−80 doi: 10.1093/jexbot/51.352.1769
CrossRef Google Scholar
|
[10]
|
Chalupka W, Cecich RA. 1997. Control of the first flowering in forest trees. Scandinavian Journal of Forest Research 12:102−11 doi: 10.1080/02827589709355390
CrossRef Google Scholar
|
[11]
|
Albani MC, Coupland G. 2010. Comparative analysis of flowering in annual and perennial plants. Current Topics in Developmental Biology 91:323−48 doi: 10.1016/S0070-2153(10)91011-9
CrossRef Google Scholar
|
[12]
|
Wang JW. 2014. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany 65:4723−30 doi: 10.1093/jxb/eru246
CrossRef Google Scholar
|
[13]
|
Wang J, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738−49 doi: 10.1016/j.cell.2009.06.014
CrossRef Google Scholar
|
[14]
|
Wu G, Park MY, Conway SR, Wang J, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59 doi: 10.1016/j.cell.2009.06.031
CrossRef Google Scholar
|
[15]
|
Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, et al. 2010. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:2156−70 doi: 10.1105/tpc.110.075606
CrossRef Google Scholar
|
[16]
|
Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M. 2009. Repression of flowering by the miR172 target SMZ. PLoS Biology 7:e1000148 doi: 10.1371/journal.pbio.1000148
CrossRef Google Scholar
|
[17]
|
Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, et al. 2009. The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Developmental Cell 17:268−78 doi: 10.1016/j.devcel.2009.06.007
CrossRef Google Scholar
|
[18]
|
Jung JH, Lee HJ, Ryu JY, Park CM. 2016. SPL3/4/5 Integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering. Molecular Plant 9:1647−59 doi: 10.1016/j.molp.2016.10.014
CrossRef Google Scholar
|
[19]
|
Wang H, Wang H. 2015. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant 8:677−88 doi: 10.1016/j.molp.2015.01.008
CrossRef Google Scholar
|
[20]
|
Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, et al. 2011. miRNA control of vegetative phase change in trees. PLoS Genetics 7:e1002012 doi: 10.1371/journal.pgen.1002012
CrossRef Google Scholar
|
[21]
|
Li H, Luo Y, Ma B, Hu J, Lv Z, et al. 2021. Hierarchical Action of Mulberry miR156 in the Vegetative Phase Transition. International Journal of Molecular Sciences 22:5550 doi: 10.3390/ijms22115550
CrossRef Google Scholar
|
[22]
|
Ahsan MU, Hayward A, Irihimovitch V, Fletcher S, Tanurdzic M, et al. 2019. Juvenility and Vegetative Phase Transition in Tropical/Subtropical Tree Crops. Frontiers in Plant Science 10:729 doi: 10.3389/fpls.2019.00729
CrossRef Google Scholar
|
[23]
|
Xing L, Zhang D, Li Y, Zhao C, Zhang S, et al. 2014. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics 15:1125 doi: 10.1186/1471-2164-15-1125
CrossRef Google Scholar
|
[24]
|
Lawrence EH, Springer CJ, Helliker BR, Poethig RS. 2021. MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change. New Phytologist 231:1008−22 doi: 10.1111/nph.17007
CrossRef Google Scholar
|
[25]
|
Lawrence EH, Leichty AR, Doody EE, Ma C, Strauss SH, et al. 2021. Vegetative phase change in Populus tremula x alba. New Phytologist 231:351−64 doi: 10.1111/nph.17316
CrossRef Google Scholar
|
[26]
|
Niu S, Yuan H, Sun X, Porth I, Li Y, et al. 2016. A transcriptomics investigation into pine reproductive organ development. New Phytologist 209:1278−89 doi: 10.1111/nph.13680
CrossRef Google Scholar
|
[27]
|
Shalom L, Shlizerman L, Zur N, Doron-Faigenboim A, Blumwald E, et al. 2015. Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family from Citrus and the effect of fruit load on their expression. Frontiers in Plant Science 6:389 doi: 10.3389/fpls.2015.00389
CrossRef Google Scholar
|
[28]
|
Jiang Y, Peng J, Wang M, Su W, Gan X, et al. 2020. The Role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in Regulating Flowering in Loquat (Eriobotrya japonica Lindl.). International Journal of Molecular Sciences 21:248 doi: 10.3390/ijms21010248
CrossRef Google Scholar
|
[29]
|
Zhou Y, Gan X, Viñegra de la Torre N, Neumann U, Albani MC. 2021. Beyond flowering time: diverse roles of an APETALA2-like transcription factor in shoot architecture and perennial traits. New Phytologist 229:444−59 doi: 10.1111/nph.16839
CrossRef Google Scholar
|
[30]
|
Song Y, Ito S, Imaizumi T. 2013. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends in Plant 18:575−83 doi: 10.1016/j.tplants.2013.05.003
CrossRef Google Scholar
|
[31]
|
Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960−2 doi: 10.1126/science.286.5446.1960
CrossRef Google Scholar
|
[32]
|
Pin PA, Nilsson O. 2012. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell & Environment 35:1742−55 doi: 10.1111/j.1365-3040.2012.02558.x
CrossRef Google Scholar
|
[33]
|
Wickland DP, Hanzawa Y. 2015. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: Functional evolution and molecular mechanisms. Molecular Plant 8:983−97 doi: 10.1016/j.molp.2015.01.007
CrossRef Google Scholar
|
[34]
|
Hsu CY, Liu Y, Luthe DS, Yuceer C. 2006. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. The Plant Cell 18:1846−61 doi: 10.1105/tpc.106.041038
CrossRef Google Scholar
|
[35]
|
Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, et al. 2005. Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Research 14:703−12 doi: 10.1007/s11248-005-6632-3
CrossRef Google Scholar
|
[36]
|
Li C, Luo L, Fu Q, Niu L, Xu ZF. 2014. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel Plant Jatropha curcas. BMC Plant Biology 14:125 doi: 10.1186/1471-2229-14-125
CrossRef Google Scholar
|
[37]
|
Odipio J, Getu B, Chauhan RD, Alicai T, Bart R, et al. 2020. Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava. PLoS One 15:e0227199 doi: 10.1371/journal.pone.0227199
CrossRef Google Scholar
|
[38]
|
Sinn JP, Held JB, Vosburg C, Klee SM, Orbovic V, et al. 2021. Flowering Locus T chimeric protein induces floral precocity in edible citrus. Plant Biotechnology Journal 19:215−17 doi: 10.1111/pbi.13463
CrossRef Google Scholar
|
[39]
|
Song G, Walworth A, Lin T, Chen Q, Han X, et al. 2019. VcFT-induced mobile florigenic signals in transgenic and transgrafted blueberries. Horticulture Research 6:105 doi: 10.1038/s41438-019-0188-5
CrossRef Google Scholar
|
[40]
|
Srinivasan C, Dardick C, Callahan A, Scorza R. 2012. Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS One 7:e40715 doi: 10.1371/journal.pone.0040715
CrossRef Google Scholar
|
[41]
|
Wenzel S, Flachowsky H, Hanke MV. 2013. The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell Tissue and Organ Culture 115:127−37 doi: 10.1007/s11240-013-0346-7
CrossRef Google Scholar
|
[42]
|
Zhang H, Harry DE, Ma C, Yuceer C, Hsu CY, et al. 2010. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. Journal of Experimental Botany 61:2549−60 doi: 10.1093/jxb/erq092
CrossRef Google Scholar
|
[43]
|
Tränkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, et al. 2010. Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309−24 doi: 10.1007/s00425-010-1254-2
CrossRef Google Scholar
|
[44]
|
Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, et al. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040−43 doi: 10.1126/science.1126038
CrossRef Google Scholar
|
[45]
|
Kotoda N, Iwanami H, Takahashi S, Abe K. 2006. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. Journal of The American Society For Horticultural Science 131:74−81 doi: 10.21273/JASHS.131.1.74
CrossRef Google Scholar
|
[46]
|
Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, et al. 2010. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant Journal 62:674−88 doi: 10.1111/j.1365-313X.2010.04185.x
CrossRef Google Scholar
|
[47]
|
Varkonyi-Gasic E, Wang T, Voogd C, Jeon S, Drummond RSM, et al. 2019. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal 17:869−80 doi: 10.1111/pbi.13021
CrossRef Google Scholar
|
[48]
|
Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61:2247−54 doi: 10.1093/jxb/erq098
CrossRef Google Scholar
|
[49]
|
Ma J, Chen X, Song Y, Zhang G, Zhou X, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 187:247−62 doi: 10.1093/plphys/kiab250
CrossRef Google Scholar
|
[50]
|
Wei J, Liu D, Liu G, Tang J, Chen Y. 2016. Molecular cloning, characterization, and expression of MiSOC1: A homolog of the flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from Mango (Mangifera indica L.). Frontiers in Plant Science 7:1758 doi: 10.3389/fpls.2016.01758
CrossRef Google Scholar
|
[51]
|
Jiang Y, Peng J, Zhu Y, Su W, Zhang L, et al. 2019. The role of EjSOC1s in flower initiation in Eriobotrya japonica. Frontiers in Plant Science 10:253 doi: 10.3389/fpls.2019.00253
CrossRef Google Scholar
|
[52]
|
Tan FC, Swain SM. 2007. Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiologia Plantarum 131:481−95 doi: 10.1111/j.1399-3054.2007.00971.x
CrossRef Google Scholar
|
[53]
|
Li G, Cao C, Yang H, Wang J, Wei W, et al. 2020. Molecular cloning and potential role of DiSOC1s in flowering regulation in Davidia involucrata Baill. Plant Physiology Biochemistry 157:453−59 doi: 10.1016/j.plaphy.2020.11.003
CrossRef Google Scholar
|
[54]
|
Voogd C, Wang T, Varkonyi-Gasic E. 2015. Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. Journal of Experimental Botany 66:4699−710 doi: 10.1093/jxb/erv234
CrossRef Google Scholar
|
[55]
|
Wang J, Gao Z, Li H, Jiu S, Qu Y, et al. 2020. Dormancy-associated MADS-box (DAM) genes influence chilling requirement of sweet cherries and co-regulate flower development with SOC1 gene. International Journal of Molecular Sciences 21:921 doi: 10.3390/ijms21030921
CrossRef Google Scholar
|
[56]
|
Gómez-Soto D, Ramos-Sánchez JM, Alique D, Conde D, Triozzi PM, et al. 2021. Overexpression of a SOC1-related gene promotes bud break in ecodormant poplars. Frontiers in Plant Science 12:670497 doi: 10.3389/fpls.2021.670497
CrossRef Google Scholar
|
[57]
|
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843−59 doi: 10.1016/0092-8674(92)90295-N
CrossRef Google Scholar
|
[58]
|
Blázquez MA, Soowal LN, Lee I, Weigel D. 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124:3835−44 doi: 10.1242/dev.124.19.3835
CrossRef Google Scholar
|
[59]
|
Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, et al. 2000. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. The Plant Journal 22:235−45 doi: 10.1046/j.1365-313x.2000.00734.x
CrossRef Google Scholar
|
[60]
|
Weigel D, Nilsson O. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495−500 doi: 10.1038/377495a0
CrossRef Google Scholar
|
[61]
|
Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM. 2001. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnology 19:263−67 doi: 10.1038/85719
CrossRef Google Scholar
|
[62]
|
Wang Y, Yu H, He X, Lu T, Huang X, Luo C. 2022. Isolation and functional characterization of a LEAFY gene in mango (Mangifera indica L.). International Journal of Molecular Sciences 23:3974 doi: 10.3390/ijms23073974
CrossRef Google Scholar
|
[63]
|
An L, Lei H, Shen X, Li T. 2012. Identification and Characterization of PpLFL, a Homolog of FLORICAULA/LEAFY in Peach (Prunus persica). Plant Molecular Biology Reporter 30:1488−95 doi: 10.1007/s11105-012-0459-x
CrossRef Google Scholar
|
[64]
|
Ding F, Zhang S, Chen H, Peng H, Lu J, et al. 2018. Functional analysis of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process. Genes Genomics 40:1259−67 doi: 10.1007/s13258-018-0739-4
CrossRef Google Scholar
|
[65]
|
Mandel MA, Yanofsky MF. 1995. A gene triggering flower formation in Arabidopsis. Nature 377:522−24 doi: 10.1038/377522a0
CrossRef Google Scholar
|
[66]
|
Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, et al. 2010. Orchestration of floral initiation by APETALA1. Science 328:85−89 doi: 10.1126/science.1185244
CrossRef Google Scholar
|
[67]
|
Alejandra Mandel M, Gustafson-Brown C, Savidge B, Yanofsky MF. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273−7 doi: 10.1038/360273a0
CrossRef Google Scholar
|
[68]
|
Huang H, Wang S, Jiang J, Liu G, Li H, et al. 2014. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula. Physiologia Plantarum 151:495−506 doi: 10.1111/ppl.12123
CrossRef Google Scholar
|
[69]
|
Moon J, Suh SS, Lee H, Choi KR, Hong CB, et al. 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. The Plant Journal 35:613−23 doi: 10.1046/j.1365-313X.2003.01833.x
CrossRef Google Scholar
|
[70]
|
Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell 10:791−800 doi: 10.1105/tpc.10.5.791
CrossRef Google Scholar
|
[71]
|
Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, et al. 2014. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638−41 doi: 10.1126/science.1250498
CrossRef Google Scholar
|
[72]
|
Meilan R. 1997. Floral induction in woody angiosperms. New Forest 14:179−202 doi: 10.1023/A:1006560603966
CrossRef Google Scholar
|
[73]
|
Bangerth KF. 2009. Floral induction in mature, perennial angiosperm fruit trees: Similarities and discrepancies with annual/biennial plants and the involvement of plant hormones. Scientia Horticulturae 122:153−63 doi: 10.1016/j.scienta.2009.06.014
CrossRef Google Scholar
|
[74]
|
Williams DR, Ross JJ, Reid JB, Potts BM. 1999. Response of Eucalyptus nitens seedlings to gibberellin biosynthesis inhibitors. Plant Growth Regulation 27:125−29 doi: 10.1023/A:1006176928861
CrossRef Google Scholar
|
[75]
|
Yuceer C, Kubiske ME, Harkess RL, Land SB. 2003. Effects of induction treatments on flowering in Populus deltoides. Tree Physiology 23:489−95 doi: 10.1093/treephys/23.7.489
CrossRef Google Scholar
|
[76]
|
Hackett WP. 1985. Juvenility, Maturation, and Rejuvenation in Woody Plants. In Horticultural Reviews, ed. Janick J. 7: XI,569. US: John Wiley & Sons. pp. 109−55. https://doi.org/10.1002/9781118060735.ch3
|
[77]
|
Boss PK, Thomas MR. 2002. Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 416:847−50 doi: 10.1038/416847a
CrossRef Google Scholar
|
[78]
|
Pharis RP, Webber JE, Ross SD. 1987. The promotion of flowering in forest trees by gibberellin-A47 and Cultural treatments: A review of the possible mechanisms. Forest Ecology and Management 19:65−84 doi: 10.1016/0378-1127(87)90012-0
CrossRef Google Scholar
|
[79]
|
Satake A, Nagahama A, Sasaki E. 2022. A cross-scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates. New Phytologist 233:2340−53 doi: 10.1111/nph.17897
CrossRef Google Scholar
|
[80]
|
Nagahama A, Yahara T. 2019. Quantitative comparison of flowering phenology traits among trees, perennial herbs, and annuals in a temperate plant community. American Journal of Botany 106:1545−1557 doi: 10.1002/ajb2.1387
CrossRef Google Scholar
|
[81]
|
Singh KP, Kushwaha CP. 2006. Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India. Annals of Botany 97:265−76 doi: 10.1093/aob/mcj028
CrossRef Google Scholar
|
[82]
|
van Schaik CP, Terborgh JW, Wright SJ. 1993. The Phenology of Tropical Forests - Adaptive Significance and Consequences for Primary Consumers. Annual Review of Ecology and Systematics 24:353−77 doi: 10.1146/annurev.es.24.110193.002033
CrossRef Google Scholar
|
[83]
|
Borchert R, Meyer SA, Felger RS, Porter-Bolland L. 2004. Environmental control of flowering periodicity in Costa Rican and Mexican tropical dry forests. Global Ecology and Biogeography 13:409−25 doi: 10.1111/j.1466-822X.2004.00111.x
CrossRef Google Scholar
|
[84]
|
Butt N, Seabrook L, Maron M, Law BS, Dawson TP, et al. 2015. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Global Change Biolology 21:3267−77 doi: 10.1111/gcb.12869
CrossRef Google Scholar
|
[85]
|
Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, et al. 2000. Phenology of Atlantic rain forest trees: A comparative study. Biotropica 32:811−23 doi: 10.1111/j.1744-7429.2000.tb00620.x
CrossRef Google Scholar
|
[86]
|
Curran LM, Caniago I, Paoli GD, Astianti D, Kusneti M, et al. 1999. Impact of El Niño and logging on canopy tree recruitment in Borneo. Science 286:2184−8 doi: 10.1126/science.286.5447.2184
CrossRef Google Scholar
|
[87]
|
Brearley FQ, Proctor J, Suriantata, Nagy L, Dalrymple G, et al. 2007. Reproductive phenology over a 10-year period in a lowland evergreen rain forest of central Borneo. Journal of Ecology 95:828−39 doi: 10.1111/j.1365-2745.2007.01258.x
CrossRef Google Scholar
|
[88]
|
Grainger J. 1939. Studies upon the time of flowering of plants: Anatomical, floristic and phenological aspects of the problem. Annals of Applied Biology 26:684−704 doi: 10.1111/j.1744-7348.1939.tb06994.x
CrossRef Google Scholar
|
[89]
|
Tan FC, Swain SM. 2006. Genetics of flower initiation and development in annual and perennial plants. Physiologia Plantarum 128:8−17 doi: 10.1111/j.1399-3054.2006.00724.x
CrossRef Google Scholar
|
[90]
|
Tooke F, Battey NH. 2010. Temperate flowering phenology. Journal of Experimental Botany 61:2853−62 doi: 10.1093/jxb/erq165
CrossRef Google Scholar
|
[91]
|
Brunner AM, Nilsson O. 2004. Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytologist 164:43−51 doi: 10.1111/j.1469-8137.2004.01165.x
CrossRef Google Scholar
|
[92]
|
Liang Q, Song K, Lu M, Dai T, Yang J, et al. 2022. Transcriptome and metabolome analyses reveal the involvement of multiple pathways in flowering intensity in mango. Frontiers in Plant Science 13:933923 doi: 10.3389/fpls.2022.933923
CrossRef Google Scholar
|
[93]
|
Meng X, Li Y, Yuan Y, Zhang Y, Li H, et al. 2020. The regulatory pathways of distinct flowering characteristics in Chinese jujube. Horticulture Research 7:123 doi: 10.1038/s41438-020-00344-7
CrossRef Google Scholar
|
[94]
|
Kudoh H. 2016. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments. New Phytologist 210:399−412 doi: 10.1111/nph.13733
CrossRef Google Scholar
|
[95]
|
Chen Z, Rao P, Yang X, Su X, Zhao T, et al. 2018. A global view of transcriptome dynamics during male floral bud development in Populus tomentosa. Scientific Reports 8:722 doi: 10.1038/s41598-017-18084-5
CrossRef Google Scholar
|
[96]
|
Fan Z, Li J, Li X, Wu B, Wang J, et al. 2015. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea. Scientific Reports 5:9729 doi: 10.1038/srep09729
CrossRef Google Scholar
|
[97]
|
Hassankhah A, Rahemi M, Ramshini H, Sarikhani S, Vahdati K. 2020. Flowering in Persian walnut: patterns of gene expression during flower development. BMC Plant Biology 20:136 doi: 10.1186/s12870-020-02372-w
CrossRef Google Scholar
|
[98]
|
Kobayashi MJ, Takeuchi Y, Kenta T, Kume T, Diway B, Shimizu KK. 2013. Mass flowering of the tropical tree Shorea beccariana was preceded by expression changes in flowering and drought-responsive genes. Molecular Ecology 22:4767−82 doi: 10.1111/mec.12344
CrossRef Google Scholar
|
[99]
|
Liu K, Feng S, Pan Y, Zhong J, Chen Y, et al. 2016. Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple (Annona squamosa L.). Frontiers in Plant Science 7:1695 doi: 10.3389/fpls.2016.01695
CrossRef Google Scholar
|
[100]
|
Miyazaki Y, Maruyama Y, Chiba Y, Kobayashi MJ, Joseph B, et al. 2014. Nitrogen as a key regulator of flowering in Fagus crenata: understanding the physiological mechanism of masting by gene expression analysis. Ecology Letters 17:1299−309 doi: 10.1111/ele.12338
CrossRef Google Scholar
|
[101]
|
Wang Z, Ma W, Zhu T, Lu N, Ouyang F, et al. 2020. Multi-omics sequencing provides insight into floral transition in Catalpa bungei. C.A. Mey. BMC Genomics 21:508 doi: 10.1186/s12864-020-06918-y
CrossRef Google Scholar
|
[102]
|
Dai X, Lin Y, Zhou T, Li Y, Liao X, et al. 2022. Natural annual transcriptome dynamics of Eucalyptus reveal seasonal adaptation of tropical/sub-tropical trees. Tree Physiology Accepted:tpac136 doi: 10.1093/treephys/tpac136
CrossRef Google Scholar
|
[103]
|
Hsu CY, Adams JP, Kim H, No K, Ma C, et al. 2011. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. PNAS 108:10756−61 doi: 10.1073/pnas.1104713108
CrossRef Google Scholar
|
[104]
|
Cooke JE, Eriksson ME, Junttila O. 2012. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant, Cell & Environment 35:1707−28 doi: 10.1111/j.1365-3040.2012.02552.x
CrossRef Google Scholar
|
[105]
|
Maurya JP, Bhalerao RP. 2017. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective. Annals of Botany 120:351−60 doi: 10.1093/aob/mcx061
CrossRef Google Scholar
|
[106]
|
Singh RK, Bhalerao RP, Eriksson ME. 2021. Growing in time: exploring the molecular mechanisms of tree growth. Tree Physiology 41:657−78 doi: 10.1093/treephys/tpaa065
CrossRef Google Scholar
|
[107]
|
Jansson S, Douglas CJ. 2007. Populus: a model system for plant biology. Annual Review of Plant Biology 58:435−58 doi: 10.1146/annurev.arplant.58.032806.103956
CrossRef Google Scholar
|
[108]
|
Ding J, Nilsson O. 2016. Molecular regulation of phenology in trees—because the seasons they are a-changin'. Current Opinion In Plant Biology 29:73−9 doi: 10.1016/j.pbi.2015.11.007
CrossRef Google Scholar
|
[109]
|
Borthakur D, Busov V, Cao X, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11 doi: 10.48130/fr-2022-0011
CrossRef Google Scholar
|
[110]
|
Yordanov YS, Ma C, Strauss SH, Busov VB. 2014. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. PNAS 111:10001−6 doi: 10.1073/pnas.1405621111
CrossRef Google Scholar
|
[111]
|
Azeez A, Zhao YC, Singh RK, Yordanov YS, Dash M, et al. 2021. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nature Communications 12:1123 doi: 10.1038/s41467-021-21449-0
CrossRef Google Scholar
|
[112]
|
Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP. 2017. Photoperiod- and temperature-mediated control of phenology in trees — a molecular perspective. New Phytologist 213:511−24 doi: 10.1111/nph.14346
CrossRef Google Scholar
|
[113]
|
Ding J, Böhlenius H, Rühl MG, Chen P, Sane S, et al. 2018. GIGANTEA-like genes control seasonal growth cessation in Populus. New Phytologist 218:1491−503 doi: 10.1111/nph.15087
CrossRef Google Scholar
|
[114]
|
Ding J, Zhang B, Li Y, André D, Nilsson O. 2021. Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees. New Phytologist 232:2339−52 doi: 10.1111/nph.17350
CrossRef Google Scholar
|
[115]
|
Nilsson O. 2022. Winter dormancy in trees. Current Biology 32:R630−R634 doi: 10.1016/j.cub.2022.04.011
CrossRef Google Scholar
|
[116]
|
Ramos-Sanchez JM, Triozzi PM, Alique D, Geng F, Gao M, et al. 2019. LHY2 integrates night-length information to determine timing of poplar photoperiodic growth. Current Biology 29:2402−2406.E4 doi: 10.1016/j.cub.2019.06.003
CrossRef Google Scholar
|
[117]
|
Andre D, Marcon A, Lee KC, Goretti D, Zhang B, et al. 2022. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Current Biology 32:2988−2996.E4 doi: 10.1016/j.cub.2022.05.023
CrossRef Google Scholar
|
[118]
|
Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, et al. 2011. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiology 156:1967−77 doi: 10.1104/pp.111.176206
CrossRef Google Scholar
|
[119]
|
Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U. 2013. FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce. Plant Physiology 163:792−803 doi: 10.1104/pp.113.224139
CrossRef Google Scholar
|
[120]
|
Gyllenstrand N, Clapham D, Källman T, Lagercrantz U. 2007. A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiology 144:248−57 doi: 10.1104/pp.107.095802
CrossRef Google Scholar
|
[121]
|
Chen J, Källman T, Ma X, Gyllenstrand N, Zaina G, et al. 2012. Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191:865−81 doi: 10.1534/genetics.112.140749
CrossRef Google Scholar
|
[122]
|
Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11:949−56 doi: 10.1105/tpc.11.5.949
CrossRef Google Scholar
|
[123]
|
Voogd C, Brian LA, Wu R, Wang T, Allan AC, et al. 2022. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. New Phytologist 233:2111−26 doi: 10.1111/nph.17916
CrossRef Google Scholar
|
[124]
|
Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM, Carmona MJ. 2009. Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiology 149:354−69 doi: 10.1104/pp.108.131052
CrossRef Google Scholar
|
[125]
|
Leseberg CH, Li A, Kang H, Duvall M, Mao L. 2006. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84−94 doi: 10.1016/j.gene.2006.05.022
CrossRef Google Scholar
|
[126]
|
Kumar G, Arya P, Gupta K, Randhawa V, Acharya V, et al. 2016. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica). Scientific Reports 6:20695 doi: 10.1038/srep20695
CrossRef Google Scholar
|
[127]
|
Zhang J, Li Z, Mei L, Yao J, Hu C. 2009. PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 229:847−59 doi: 10.1007/s00425-008-0885-z
CrossRef Google Scholar
|
[128]
|
Agustí M, Mesejo C, Muñoz-Fambuena N, Vera-Sirera F, de Lucas M, et al. 2020. Fruit-dependent epigenetic regulation of flowering in Citrus. New Phytologist 225:376−84 doi: 10.1111/nph.16044
CrossRef Google Scholar
|
[129]
|
Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, et al. 2008. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes 4:495−507 doi: 10.1007/s11295-007-0126-9
CrossRef Google Scholar
|
[130]
|
Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, et al. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes and Development 21:397−402 doi: 10.1101/gad.1518407
CrossRef Google Scholar
|
[131]
|
Yamane H, Wada M, Honda C, Matsuura T, Ikeda Y, et al. 2019. Overexpression of Prunus DAM6 inhibits growth, represses bud break competency of dormant buds and delays bud outgrowth in apple plants. PLoS One 14:e0214788 doi: 10.1371/journal.pone.0214788
CrossRef Google Scholar
|
[132]
|
Wu R, Tomes S, Karunairetnam S, Tustin SD, Hellens RP, et al. 2017. SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple. Frontiers in Plant Science 8:477 doi: 10.3389/fpls.2017.00477
CrossRef Google Scholar
|
[133]
|
Leida C, Conesa A, Llácer G, Badenes ML, Ríos G. 2012. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytologist 193:67−80 doi: 10.1111/j.1469-8137.2011.03863.x
CrossRef Google Scholar
|
[134]
|
Saito T, Bai S, Imai T, Ito A, Nakajima I, et al. 2015. Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant, Cell & Environment 38:1157−66 doi: 10.1111/pce.12469
CrossRef Google Scholar
|
[135]
|
Wu R, Cooney J, Tomes S, Rebstock R, Karunairetnam S, et al. 2021. RNAi-mediated repression of dormancy-related genes results in evergrowing apple trees. Tree Physiology 41:1510−23 doi: 10.1093/treephys/tpab007
CrossRef Google Scholar
|
[136]
|
Falavigna VDS, Guitton B, Costes E, Andrés F. 2018. I want to (Bud) break free: The potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees. Frontiers in Plant Science 9:1990 doi: 10.3389/fpls.2018.01990
CrossRef Google Scholar
|
[137]
|
da Silveira Falavigna V, Severing E, Lai X, Estevan J, Farrera I, et al. 2021. Unraveling the role of MADS transcription factor complexes in apple tree dormancy. New Phytologist 232:2071−88 doi: 10.1111/nph.17710
CrossRef Google Scholar
|
[138]
|
Moser M, Asquini E, Miolli GV, Weigl K, Hanke MV, et al. 2020. The MADS-box gene MdDAM1 controls growth cessation and bud dormancy in apple. Frontiers in Plant Science 11:1003 doi: 10.3389/fpls.2020.01003
CrossRef Google Scholar
|
[139]
|
Singh RK, Maurya JP, Azeez A, Miskolczi P, Tylewicz S, et al. 2018. A genetic network mediating the control of bud break in hybrid aspen. Nature Communications 9:4173 doi: 10.1038/s41467-018-06696-y
CrossRef Google Scholar
|
[140]
|
Singh RK, Miskolczi P, Maurya JP, Bhalerao RP. 2019. A Tree ortholog of SHORT VEGETATIVE PHASE Floral repressor mediates photoperiodic control of bud dormancy. Current Biology 29:128−133.E2 doi: 10.1016/j.cub.2018.11.006
CrossRef Google Scholar
|
[141]
|
Yang Q, Gao Y, Wu X, Moriguchi T, Bai S, et al. 2021. Bud endodormancy in deciduous fruit trees: advances and prospects. Horticuture Research 8:139 doi: 10.1038/s41438-021-00575-2
CrossRef Google Scholar
|
[142]
|
Wu R, Wang T, Warren BAW, Allan AC, Macknight RC, et al. 2017. Kiwifruit SVP2 gene prevents premature budbreak during dormancy. Journal of Experimental Botany 68:1071−82 doi: 10.1093/jxb/erx014
CrossRef Google Scholar
|
[143]
|
André D, Zambrano JA, Zhang B, Lee KC, Rühl M, et al. 2022. Populus SVL acts in leaves to modulate the timing of growth cessation and bud set. Frontiers in Plant Science 13:823019 doi: 10.3389/fpls.2022.823019
CrossRef Google Scholar
|
[144]
|
Goralogia GS, Howe GT, Brunner AM, Helliwell E, Nagle MF, et al. 2021. Overexpression of SHORT VEGETATIVE PHASE-LIKE (SVL) in Populus delays onset and reduces abundance of flowering in field-grown trees. Horticulture Research 8:167 doi: 10.1038/s41438-021-00600-4
CrossRef Google Scholar
|
[145]
|
Moon J, Lee H, Kim M, Lee I. 2005. Analysis of flowering pathway integrators in Arabidopsis. Plant and Cell Physiology 46:292−99 doi: 10.1093/pcp/pci024
CrossRef Google Scholar
|
[146]
|
Mouhu K, Kurokura T, Koskela EA, Albert VA, Elomaa P, et al. 2013. The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth. The Plant Cell 25:3296−310 doi: 10.1105/tpc.113.115055
CrossRef Google Scholar
|
[147]
|
Cseke LJ, Zheng J, Podila GK. 2003. Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55−67 doi: 10.1016/S0378-1119(03)00765-0
CrossRef Google Scholar
|
[148]
|
Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, et al. 2009. Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819−28 doi: 10.1139/G09-050
CrossRef Google Scholar
|
[149]
|
Manghwar H, Lindsey K, Zhang X, Jin S. 2019. CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends In Plant Science 24:1102−25 doi: 10.1016/j.tplants.2019.09.006
CrossRef Google Scholar
|
[150]
|
Yamagishi N, Li C, Yoshikawa N. 2016. Promotion of flowering by Apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear. Frontiers in Plant Science 7:171 doi: 10.3389/fpls.2016.00171
CrossRef Google Scholar
|
[151]
|
Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, et al. 2012. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235:1239−51 doi: 10.1007/s00425-011-1571-0
CrossRef Google Scholar
|
[152]
|
Klocko AL, Ma C, Robertson S, Esfandiari E, Nilsson O, et al. 2016. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnology Journal 14:808−19 doi: 10.1111/pbi.12431
CrossRef Google Scholar
|
[153]
|
Putterill J, Varkonyi-Gasic E. 2016. FT and florigen long-distance flowering control in plants. Current Opinion In Plant Biology 33:77−82 doi: 10.1016/j.pbi.2016.06.008
CrossRef Google Scholar
|
[154]
|
Fitter AH, Fitter RSR. 2002. Rapid changes in flowering time in British plants. Science 296:1689−91 doi: 10.1126/science.1071617
CrossRef Google Scholar
|
[155]
|
Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD. 2011. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 333:1024−6 doi: 10.1126/science.1206432
CrossRef Google Scholar
|
[156]
|
Satake A, Kawagoe T, Saburi Y, Chiba Y, Sakurai G, Kudoh H. 2013. Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nature Communications 4:2303 doi: 10.1038/ncomms3303
CrossRef Google Scholar
|
[157]
|
Diggle PK, Mulder CPH. 2019. Diverse Developmental Responses to Warming Temperatures Underlie Changes in Flowering Phenologies. Integrative And Comparative Biology 59:559−70 doi: 10.1093/icb/icz076
CrossRef Google Scholar
|
[158]
|
Ma J, Chen X, Han F, Song Y, Zhou B, et al. 2022. The long road to bloom in conifers. Forestry Research 2:16 doi: 10.48130/FR-2022-0016
CrossRef Google Scholar
|
[159]
|
Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E. 2019. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Frontiers in Plant Science 10:40 doi: 10.3389/fpls.2019.00040
CrossRef Google Scholar
|
[160]
|
Flachowsky H, Szankowski I, Waidmann S, Peil A, Trankner C, et al. 2012. The MdTFL1 gene of apple (Malus × domestica Borkh.) reduces vegetative growth and generation time. Tree Physiology 32:1288−301 doi: 10.1093/treephys/tps080
CrossRef Google Scholar
|
[161]
|
Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, et al. 2009. Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). Plant and Cell Physiology 50:394−412 doi: 10.1093/pcp/pcp001
CrossRef Google Scholar
|
[162]
|
Flachowsky H, Hättasch C, Höfer M, Peil A, Hanke MV. 2010. Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251−63 doi: 10.1007/s00425-009-1041-0
CrossRef Google Scholar
|
[163]
|
Wada M, Cao Q, Kotoda N, Soejima J, Masuda T. 2002. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Molecular Biology 49:567−77 doi: 10.1023/A:1015544207121
CrossRef Google Scholar
|
[164]
|
Kagaya H, Ito N, Shibuya T, Komori S, Kato K, Kanayama Y. 2020. Characterization of FLOWERING LOCUS C homologs in apple as a model for fruit trees. International Journal of Molecular Sciences 21:4562 doi: 10.3390/ijms21124562
CrossRef Google Scholar
|
[165]
|
Ziv D, Zviran T, Zezak O, Samach A, Irihimovitch V. 2014. Expression profiling of FLOWERING LOCUS T-like gene in alternate bearing 'Hass' avocado trees suggests a role for PaFT in avocado flower induction. PLoS One 9:e110613 doi: 10.1371/journal.pone.0110613
CrossRef Google Scholar
|
[166]
|
Song G, Walworth A, Zhao D, Jiang N, Hancock JF. 2013. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Reports 32:1759−69 doi: 10.1007/s00299-013-1489-z
CrossRef Google Scholar
|
[167]
|
Pillitteri LJ, Lovatt CJ, Walling LL. 2004. Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiology 135:1540−51 doi: 10.1104/pp.103.036178
CrossRef Google Scholar
|
[168]
|
Orbović V, Ravanfar SA, Acanda Y, Narvaez J, Merritt BA, et al. 2021. Stress-inducible Arabidopsis thaliana RD29A promoter constitutively drives Citrus sinensis APETALA1 and LEAFY expression and precocious flowering in transgenic Citrus spp. Transgenic Research 30:687−99 doi: 10.1007/s11248-021-00260-z
CrossRef Google Scholar
|
[169]
|
Liu X, Zhang J, Abuahmad A, Franks RG, Xie D, et al. 2016. Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. Planta 243:1129−41 doi: 10.1007/s00425-016-2466-x
CrossRef Google Scholar
|
[170]
|
Elorriaga E, Klocko AL, Ma C, du Plessis M, An X, et al. 2021. Genetic containment in vegetatively propagated forest trees: CRISPR disruption of LEAFY function in Eucalyptus gives sterile indeterminate inflorescences and normal juvenile development. Plant Biotechnology Journal 19:1743−55 doi: 10.1111/pbi.13588
CrossRef Google Scholar
|
[171]
|
Brill EM, Watson JM. 2004. Ectopic expression of a Eucalyptus grandis SVP orthologue alters the flowering time of Arabidopsis thaliana. Functional Plant Biology 31:217 doi: 10.1071/FP03180
CrossRef Google Scholar
|
[172]
|
Ikegami H, Nogata H, Inoue Y, Himeno S, Yakushiji H, et al. 2013. Expression of FcFT1, a FLOWERING LOCUS T-like gene, is regulated by light and associated with inflorescence differentiation in fig (Ficus carica L.). BMC Plant Biology 13:216 doi: 10.1186/1471-2229-13-216
CrossRef Google Scholar
|
[173]
|
Li C, Chen L, Fan X, Qi W, Ma J, et al. 2020. MawuAP1 promotes flowering and fruit development in the basal angiosperm Magnolia wufengensis (Magnoliaceae). Tree Physiology 40:1247−59 doi: 10.1093/treephys/tpaa057
CrossRef Google Scholar
|
[174]
|
Carmona MJ, Calonje M, Martínez-Zapater JM. 2007. The FT/TFL1 gene family in grapevine. Plant Molecular Biology 63:637−50 doi: 10.1007/s11103-006-9113-z
CrossRef Google Scholar
|
[175]
|
Esumi T, Kitamura Y, Hagihara C, Yamane H, Tao R. 2010. Identification of a TFL1 ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). Scientia Horticulturae 125:608−16 doi: 10.1016/j.scienta.2010.05.016
CrossRef Google Scholar
|
[176]
|
Tang M, Bai X, Wang J, Chen T, Meng X, et al. 2022. Efficiency of graft-transmitted JcFT for floral induction in woody perennial species of the Jatropha genus depends on transport distance. Tree Physiology 42:189−201 doi: 10.1093/treephys/tpab116
CrossRef Google Scholar
|
[177]
|
Bai X, Ke J, Huang P, Fatima I, Cheng T, Tang M. 2022. Promotion of natural flowers by JcFT depends on JcLFY in the perennial woody species Jatropha curcas. Plant Science 318:111236 doi: 10.1016/j.plantsci.2022.111236
CrossRef Google Scholar
|
[178]
|
Tang M, Tao Y, Fu Q, Song Y, Niu L, et al. 2016. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development. Scientific Reports 6:37306 doi: 10.1038/srep37306
CrossRef Google Scholar
|
[179]
|
Tang M, Tao Y, Xu Z. 2016. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha. PeerJ 4:e1969 doi: 10.7717/peerj.1969
CrossRef Google Scholar
|
[180]
|
Li C, Fu Q, Niu L, Luo L, Chen J, Xu Z. 2017. Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas. Scientific Reports 7:43090 doi: 10.1038/srep43090
CrossRef Google Scholar
|
[181]
|
Varkonyi-Gasic E, Moss SMA, Voogd C, Wang T, Putterill J, et al. 2013. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytologist 198:732−46 doi: 10.1111/nph.12162
CrossRef Google Scholar
|
[182]
|
Voogd C, Brian LA, Wang T, Allan AC, Varkonyi-Gasic E. 2017. Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit. Journal of Experimental Botany 68:1539−53 doi: 10.1093/jxb/erx044
CrossRef Google Scholar
|
[183]
|
Herath D, Voogd C, Mayo-Smith M, Yang B, Allan AC, et al. 2022. CRISPR-Cas9-mediated mutagenesis of kiwifruit BFT genes results in an evergrowing but not early flowering phenotype. Plant Biotechnology Journal 20:2064−76 doi: 10.1111/pbi.13888
CrossRef Google Scholar
|
[184]
|
Wu R, Wang T, McGie T, Voogd C, Allan AC, et al. 2014. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. Journal of Experimental Botany 65:4985−95 doi: 10.1093/jxb/eru264
CrossRef Google Scholar
|
[185]
|
Wu R, Walton EF, Richardson AC, Wood M, Hellens RP, et al. 2012. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. Journal of Experimental Botany 63:797−807 doi: 10.1093/jxb/err304
CrossRef Google Scholar
|
[186]
|
Ding F, Zhang S, Chen H, Su Z, Zhang R, et al. 2015. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.). Plant Science 241:128−37 doi: 10.1016/j.plantsci.2015.10.004
CrossRef Google Scholar
|
[187]
|
Zhang J, Liu G, Guo C, He Y, Li Z, et al. 2011. The FLOWERING LOCUS T orthologous gene of Platanus acerifolia is expressed as alternatively spliced forms with distinct spatial and temporal patterns. Plant Biology 13:809−20 doi: 10.1111/j.1438-8677.2010.00432.x
CrossRef Google Scholar
|
[188]
|
Winterhagen P, Tiyayon P, Samach A, Hegele M, Wunsche JN. 2013. Isolation and characterization of FLOWERING LOCUS T subforms and APETALA1 of the subtropical fruit tree Dimocarpus longan. Plant Physiology and Biochemistry 71:184−90 doi: 10.1016/j.plaphy.2013.07.013
CrossRef Google Scholar
|
[189]
|
Jiang Y, Zhu Y, Zhang L, Su W, Peng J, et al. 2020. EjTFL1 genes promote growth but inhibit flower bud differentiation in loquat. Frontiers in Plant Science 11:576 doi: 10.3389/fpls.2020.00576
CrossRef Google Scholar
|
[190]
|
Liu Y, Zhao Q, Meng N, Song H, Li C, et al. 2017. Over-expression of EjLFY-1 leads to an early flowering habit in strawberry (Fragaria × ananassa) and its asexual progeny. Frontiers in Plant Science 8:496 doi: 10.3389/fpls.2017.00496
CrossRef Google Scholar
|
[191]
|
Gafni I, Rai AC, Halon E, Zviran T, Sisai I, et al. 2022. Expression profiling of four mango FT/TFL1-encoding genes under different fruit load conditions, and their involvement in flowering regulation. Plants 11:2409 doi: 10.3390/plants11182409
CrossRef Google Scholar
|
[192]
|
Wang Y, He X, Yu H, Mo X, Fan Y, et al. 2021. Overexpression of four MiTFL1 genes from mango delays the flowering time in transgenic Arabidopsis. BMC Plant Biology 21:407 doi: 10.1186/s12870-021-03199-9
CrossRef Google Scholar
|
[193]
|
Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O. 2012. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytologist 196:1260−73 doi: 10.1111/j.1469-8137.2012.04332.x
CrossRef Google Scholar
|
[194]
|
Haberman A, Bakhshian O, Cerezo-Medina S, Paltiel J, Adler C, et al. 2017. A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant, Cell & Environment 40:1263−80 doi: 10.1111/pce.12922
CrossRef Google Scholar
|
[195]
|
Chen Y, Jiang P, Thammannagowda S, Liang H, Wilde HD. 2013. Characterization of peach TFL1 and comparison with FT/TFL1 gene families of the rosaceae. Journal of the American Society for Horticultural Science 138:12−7 doi: 10.21273/JASHS.138.1.12
CrossRef Google Scholar
|
[196]
|
Cai Y, Wang L, Ogutu CO, Yang Q, Luo B, et al. 2021. The MADS-box gene PpPI is a key regulator of the double-flower trait in peach. Physiologia Plantarum 173:2119−29 doi: 10.1111/ppl.13561
CrossRef Google Scholar
|
[197]
|
Zhang X, An L, Nguyen TH, Liang H, Wang R, et al. 2015. The cloning and functional characterization of peach CONSTANS and FLOWERING LOCUS T homologous genes PpCO and PpFT. PLoS One 10:e0124108 doi: 10.1371/journal.pone.0124108
CrossRef Google Scholar
|
[198]
|
Freiman A, Golobovitch S, Yablovitz Z, Belausov E, Dahan Y, et al. 2015. Expression of flowering locus T2 transgene from Pyrus communis L. delays dormancy and leaf senescence in Malus × domestica Borkh, and causes early flowering in tobacco. Plant Science 241:164−76 doi: 10.1016/j.plantsci.2015.09.012
CrossRef Google Scholar
|
[199]
|
Patil HB, Chaurasia AK, Azeez A, Krishna B, Subramaniam VR, et al. 2018. Characterization of two TERMINAL FLOWER1 homologs PgTFL1 and PgCENa from pomegranate (Punica granatum L.). Tree Physiol 38:772−84 doi: 10.1093/treephys/tpx154
CrossRef Google Scholar
|
[200]
|
Azeez A, Miskolczi P, Tylewicz S, Bhalerao RP. 2014. A tree ortholog of APETALA1 mediates photoperiodic control of seasonal growth. Current Biology 24:717−24 doi: 10.1016/j.cub.2014.02.037
CrossRef Google Scholar
|
[201]
|
Bi Z, Li X, Huang H, Hua Y. 2016. Identification, functional study, and promoter analysis of HbMFT1, a homolog of MFT from rubber tree (Hevea brasiliensis). International Journal of Molecular Sciences 17:247 doi: 10.3390/ijms17030247
CrossRef Google Scholar
|
[202]
|
Yarur A, Soto E, León G, Almeida AM. 2016. The sweet cherry (Prunus avium) FLOWERING LOCUS T gene is expressed during floral bud determination and can promote flowering in a winter-annual Arabidopsis accession. Plant Reproduction 29:311−22 doi: 10.1007/s00497-016-0296-4
CrossRef Google Scholar
|
[203]
|
Wang J, Jiu S, Xu Y, Sabir IA, Wang L, et al. 2021. SVP-like gene PavSVP potentially suppressing flowering with PavSEP, PavAP1, and PavJONITLESS in sweet cherries (Prunus avium L.). Plant Physiology and Biochemistry 159:277−84 doi: 10.1016/j.plaphy.2020.12.013
CrossRef Google Scholar
|
[204]
|
Wang J, Zhang X, Yan G, Zhou Y, Zhang K. 2013. Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L.) causes early flowering in Arabidopsis thaliana. Journal of Plant Physiology 170:315−20 doi: 10.1016/j.jplph.2012.09.015
CrossRef Google Scholar
|
[205]
|
Lei H, Su S, Ma L, Wen Y, Wang X. 2017. Molecular cloning and functional characterization of CoFT1, a homolog of FLOWERING LOCUS T (FT) from Camellia oleifera. Gene 626:215−26 doi: 10.1016/j.gene.2017.05.044
CrossRef Google Scholar
|
[206]
|
Velázquez K, Agüero J, Vives MC, Aleza P, Pina JA, et al. 2016. Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnology Journal 14:1976−85 doi: 10.1111/pbi.12555
CrossRef Google Scholar
|