[1]
|
Fang C, Fernie AR, Luo J. 2019. Exploring the diversity of plant metabolism. Trends in Plant Science 24:83−98 doi: 10.1016/j.tplants.2018.09.006
CrossRef Google Scholar
|
[2]
|
McGarvey DJ, Croteau R. 1995. Terpenoid metabolism. The Plant Cell 7:1015−26 doi: 10.1105/tpc.7.7.1015
CrossRef Google Scholar
|
[3]
|
Pichersky E, Raguso RA. 2018. Why do plants produce so many terpenoid compounds? New Phytologist 220:692−702 doi: 10.1111/nph.14178
CrossRef Google Scholar
|
[4]
|
Ni R, Wang P, Zhan P, Tian H, Li T. 2021. Effects of different frying temperatures on the aroma profiles of fried mountain pepper (Litsea cubeba (Lour. ) Pers. ) oils and characterization of their key odorants. Food Chemistry 357:129786 doi: 10.1016/j.foodchem.2021.129786
CrossRef Google Scholar
|
[5]
|
Wu Z, Li L, Liu H, Yan X, Ma Y, et al. 2021. AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. Plant Science 308:110920 doi: 10.1016/j.plantsci.2021.110920
CrossRef Google Scholar
|
[6]
|
Yuan Y, Ren S, Liu X, Su L, Wu Y, et al. 2022. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. New Phytologist 234:164−78 doi: 10.1111/nph.17977
CrossRef Google Scholar
|
[7]
|
Chen Y, Li Z, Zhao Y, Gao M, Wang J, et al. 2020. The Litsea genome and the evolution of the laurel family. Nature Communications 11:1675 doi: 10.1038/s41467-020-15493-5
CrossRef Google Scholar
|
[8]
|
Han X, Zhang J, Han S, Chong S, Meng G, et al. 2022. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. Plant Communications 3:100410 doi: 10.1016/j.xplc.2022.100410
CrossRef Google Scholar
|
[9]
|
Rodríguez-Concepción M, Boronat A. 2015. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Current Opinion in Plant Biology 25:17−22 doi: 10.1016/j.pbi.2015.04.001
CrossRef Google Scholar
|
[10]
|
Saladié M, Wright LP, Garcia-Mas J, Rodriguez-Concepcion M, Phillips MA. 2014. The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps. Journal of Experimental Botany 65:5077−92 doi: 10.1093/jxb/eru275
CrossRef Google Scholar
|
[11]
|
Rodríguez-concepción M, Ahumada I, Diez-Juez E, Sauret-Güeto S, Lois LM, et al. 2001. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. The Plant Journal 27:213−22 doi: 10.1046/j.1365-313x.2001.01089.x
CrossRef Google Scholar
|
[12]
|
Carretero-Paulet L, Lipska A, Pérez-Gil J, Sangari FJ, Albert VA, et al. 2013. Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme. BMC Evolutionary Biology 13:180 doi: 10.1186/1471-2148-13-180
CrossRef Google Scholar
|
[13]
|
Grolle S, Bringer-Meyer S, Sahm H. 2000. Isolation of the dxr gene of Zymomonas mobilis and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. FEMS Microbiology Letters 191:131−37 doi: 10.1111/j.1574-6968.2000.tb09329.x
CrossRef Google Scholar
|
[14]
|
Takahashi S, Kuzuyama T, Watanabe H, Seto H. 1998. A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 95:9879−84 doi: 10.1073/pnas.95.17.9879
CrossRef Google Scholar
|
[15]
|
Sharma R, Devi K, Modi MK, Sen P. 2021. In silico characterization and differential expression analysis of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) of Centella asiatica. 3 Biotech 11:184 doi: 10.1007/s13205-021-02723-w
CrossRef Google Scholar
|
[16]
|
Zhang Y, Yan H, Li Y, Xiong Y, Niu M, et al. 2021. Molecular cloning and functional analysis of 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Santalum album. Genes 12:626 doi: 10.3390/genes12050626
CrossRef Google Scholar
|
[17]
|
Zheng Q, Yu L, Liu Z, Li M, Xiang F, et al. 2004. [Cloning and analysis of cDNA encoding key enzyme gene (dxr) of the non-MVA pathway in Taxus chinensis cells]. Sheng Wu Gong Cheng Xue Bao 20:548−53
Google Scholar
|
[18]
|
Zhou L, Yang G, Sun H, Tang J, Yang J, et al. 2017. Effects of different doses of cadmium on secondary metabolites and gene expression in Artemisia annua L. Frontiers of Medicine 11:137−46 doi: 10.1007/s11684-016-0486-3
CrossRef Google Scholar
|
[19]
|
Fung PK, Krushkal J, Weathers PJ. 2010. Computational analysis of the evolution of 1-deoxy-D-xylulose-5-phosphate reductoisomerase, an important enzyme in plant terpene biosynthesis. Chemistry Biodiversity 7:1098−110 doi: 10.1002/cbdv.200900313
CrossRef Google Scholar
|
[20]
|
Chang K, Qiu F, Chen M, Zeng L, Liu X, et al. 2014. Engineering the MEP pathway enhanced ajmalicine biosynthesis. Biotechnology and Applied Biochemistry 61:249−55 doi: 10.1002/bab.1176
CrossRef Google Scholar
|
[21]
|
Ahmad B, Dar TA, Khan MMA, Ahmad A, Rinklebe J, et al. 2022. Oligochitosan fortifies antioxidative and photosynthetic metabolism and enhances secondary metabolite accumulation in arsenic-stressed peppermint. Frontiers in Plant Science 13:987746 doi: 10.3389/fpls.2022.987746
CrossRef Google Scholar
|
[22]
|
Hu Z, Tang B, Wu Q, Zheng J, Leng P, Zhang K. 2017. Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium 'Siberia' and unscented Lilium 'novano'. Frontiers in Plant Science 8:1351 doi: 10.3389/fpls.2017.01351
CrossRef Google Scholar
|
[23]
|
Majdi M, Malekzadeh-Mashhady A, Maroufi A, Crocoll C. 2017. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors. Plant Physiology and Biochemistry 115:152−62 doi: 10.1016/j.plaphy.2017.03.016
CrossRef Google Scholar
|
[24]
|
Xu C, Wei H, Movahedi A, Sun W, Ma X, et al. 2019. Evaluation, characterization, expression profiling, and functional analysis of DXS and DXR genes of Populus trichocarpa. Plant Physiology and Biochemistry 142:94−105 doi: 10.1016/j.plaphy.2019.05.034
CrossRef Google Scholar
|
[25]
|
Mendoza-Poudereux I, Muñoz-Bertomeu J, Arrillaga I, Segura J. 2014. Deoxyxylulose 5-phosphate reductoisomerase is not a rate-determining enzyme for essential oil production in spike lavender. Journal of Plant Physiology 171:1564−70 doi: 10.1016/j.jplph.2014.07.012
CrossRef Google Scholar
|
[26]
|
You MK, Lee YJ, Kim JK, Baek SA, Jeon YA, et al. 2020. The organ-specific differential roles of rice DXS and DXR, the first two enzymes of the MEP pathway, in carotenoid metabolism in Oryza sativa leaves and seeds. BMC Plant Biology 20:167 doi: 10.1186/s12870-020-02357-9
CrossRef Google Scholar
|
[27]
|
Prakash A, Vadivel V. 2020. Citral and linalool nanoemulsions: impact of synergism and ripening inhibitors on the stability and antibacterial activity against Listeria monocytogenes. Journal of Food Science and Technology 57:1495−504 doi: 10.1007/s13197-019-04185-8
CrossRef Google Scholar
|
[28]
|
Wang H, Li Y, Li Z, Ma R, Bai X, et al. 2022. Inhibition of Cronobacter sakazakii by Litsea cubeba essential oil and the antibacterial mechanism. Food 11:3900 doi: 10.3390/foods11233900
CrossRef Google Scholar
|
[29]
|
Borotová P, Galovičová L, Vukovic NL, Vukic M, Kunová S, et al. 2022. Role of Litsea cubeba essential oil in agricultural products safety: antioxidant and antimicrobial applications. Plants 11:1504 doi: 10.3390/plants11111504
CrossRef Google Scholar
|
[30]
|
Demetriou AA, Seifter E, Levenson SM. 1974. Effect of vitamin A and Citral on peritoneal adhesion formation. The Journal of Surgical Research 17:325−29 doi: 10.1016/0022-4804(74)90138-3
CrossRef Google Scholar
|
[31]
|
Quach NT, Nguyen QH, Vu THN, Le TTH, Ta TTT, et al. 2021. Plant-derived bioactive compounds produced by Streptomyces variabilis LCP18 associated with Litsea cubeba (Lour.) Pers as potential target to combat human pathogenic bacteria and human cancer cell lines. Brazilian Journal of Microbiology 52:1215−24 doi: 10.1007/s42770-021-00510-6
CrossRef Google Scholar
|
[32]
|
Dai J, Li C, Cui H, Lin L. 2021. Unraveling the anti-bacterial mechanism of Litsea cubeba essential oil against E. coli O157: H7 and its application in vegetable juices. International Journal of Food Microbiology 338:108989 doi: 10.1016/j.ijfoodmicro.2020.108989
CrossRef Google Scholar
|
[33]
|
Si L, Chen Y, Han X, Zhan Z, Tian S, et al. 2012. Chemical composition of essential oils of Litsea cubeba harvested from its distribution areas in China. Molecules 17:7057−66 doi: 10.3390/molecules17067057
CrossRef Google Scholar
|
[34]
|
Wang M, Gao M, Zhao Y, Chen Y, Wu L, et al. 2022. LcERF19, an AP2/ERF transcription factor from Litsea cubeba, positively regulates geranial and neral biosynthesis. Horticulture Research 9:uhac093 doi: 10.1093/hr/uhac093
CrossRef Google Scholar
|
[35]
|
Wang M, Jiao Y, Zhao Y, Gao M, Wu L, et al. 2022. Phytohormone and transcriptome of pericarp reveals jasmonate and LcMYC2 are involved in neral and geranial biosynthesis in Litsea cubeba. Industrial Crops and Products 177:114423 doi: 10.1016/j.indcrop.2021.114423
CrossRef Google Scholar
|
[36]
|
Wu L, Zhao Y, Zhang Q, Chen Y, Gao M, et al. 2020. Overexpression of the 3-hydroxy-3-methylglutaryl-CoA synthase gene LcHMGS effectively increases the yield of monoterpenes and sesquiterpenes. Tree Physiology 40:1095−107 doi: 10.1093/treephys/tpaa045
CrossRef Google Scholar
|
[37]
|
Zhao Y, Chen Y, Gao M, Yin H, Wu L, et al. 2020. Overexpression of geranyl diphosphate synthase small subunit 1 (LcGPPS. SSU1) enhances the monoterpene content and biomass. Industrial Crops and Products 143:111926 doi: 10.1016/j.indcrop.2019.111926
CrossRef Google Scholar
|
[38]
|
Lin L, Han X, Chen Y, Wu Q, Wang Y. 2013. Identification of appropriate reference genes for normalizing transcript expression by quantitative real-time PCR in Litsea cubeba. Molecular Genetics and Genomics 288:727−37 doi: 10.1007/s00438-013-0785-1
CrossRef Google Scholar
|
[39]
|
Schardl CL, Byrd AD, Benzion G, Altschuler MA, Hildebrand DF, et al. 1987. Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61:1−11 doi: 10.1016/0378-1119(87)90359-3
CrossRef Google Scholar
|
[40]
|
Gao M, Lin L, Chen Y, Wang Y. 2016. Digital gene expression profiling to explore differentially expressed genes associated with terpenoid biosynthesis during fruit development in Litsea cubeba. Molecules 21:1251 doi: 10.3390/molecules21091251
CrossRef Google Scholar
|
[41]
|
Han X, Wang Y, Chen Y, Lin L, Wu Q. 2013. Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba. PLoS One 8:e76890 doi: 10.1371/journal.pone.0076890
CrossRef Google Scholar
|
[42]
|
Vaccaro M, Ocampo Bernal V, Malafronte N, De Tommasi N, Leone A. 2019. High yield of bioactive abietane diterpenes in Salvia sclarea hairy roots by overexpressing cyanobacterial DXS or DXR genes. Planta Medica 85:973−80 doi: 10.1055/a-0895-5878
CrossRef Google Scholar
|
[43]
|
Pateraki I, Kanellis AK. 2010. Stress and developmental responses of terpenoid biosynthetic genes in Cistus creticus subsp. creticus. Plant Cell Reports 29:629−41 doi: 10.1007/s00299-010-0849-1
CrossRef Google Scholar
|
[44]
|
Gupta P, Agarwal AV, Akhtar N, Sangwan RS, Singh SP, et al. 2013. Cloning and characterization of 2-C-methyl-D-erythritol-4-phosphate pathway genes for isoprenoid biosynthesis from Indian ginseng, Withania somnifera. Protoplasma 250:285−95 doi: 10.1007/s00709-012-0410-x
CrossRef Google Scholar
|
[45]
|
Han M, Heppel SC, Su T, Bogs J, Zu Y, et al. 2013. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus. PLoS One 8:e62467 doi: 10.1371/journal.pone.0062467
CrossRef Google Scholar
|
[46]
|
Liu B, Liu Q, Zhou Z, Yin H, Xie Y. 2022. Overexpression of geranyl diphosphate synthase (PmGPPS1) boosts monoterpene and diterpene production involved in the response to pine wood nematode invasion. Tree Physiology 42:411−24 doi: 10.1093/treephys/tpab103
CrossRef Google Scholar
|
[47]
|
Yin JL, Wong WS, Jang IC, Chua NH. 2017. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants. The New Phytologist 213:1133−44 doi: 10.1111/nph.14280
CrossRef Google Scholar
|
[48]
|
Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B. 2004. Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. The Plant Journal 38:131−41 doi: 10.1111/j.1365-313X.2004.02030.x
CrossRef Google Scholar
|
[49]
|
Miller B, Heuser T, Zimmer W. 2000. Functional involvement of a deoxy-D-xylulose 5-phosphate reductoisomerase gene harboring locus of Synechococcus leopoliensis in isoprenoid biosynthesis. FEBS Letters 481:221−26 doi: 10.1016/S0014-5793(00)02014-7
CrossRef Google Scholar
|
[50]
|
Zhang T, Sun M, Guo Y, Shi X, Yang Y, et al. 2018. Overexpression of LiDXS and LiDXR from lily (Lilium 'Siberia') enhances the terpenoid content in tobacco flowers. Frontiers in Plant Science 9:909 doi: 10.3389/fpls.2018.00909
CrossRef Google Scholar
|
[51]
|
Dong C, Qu G, Guo J, Wei F, Gao S, et al. 2022. Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum. Science Bulletin 67:315−27 doi: 10.1016/j.scib.2021.07.003
CrossRef Google Scholar
|
[52]
|
Simpson K, Quiroz LF, Rodriguez-Concepción M, Stange CR. 2016. Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot (Daucus carota). Frontiers in Plant Science 7:1344 doi: 10.3389/fpls.2016.01344
CrossRef Google Scholar
|
[53]
|
Movahedi A, Wei H, Pucker B, Ghaderi-Zefrehei M, Rasouli F, et al. 2022. Isoprenoid biosynthesis regulation in poplars by methylerythritol phosphate and mevalonic acid pathways. Frontiers in Plant Science 13:968780 doi: 10.3389/fpls.2022.968780
CrossRef Google Scholar
|
[54]
|
Mendoza-Poudereux I, Kutzner E, Huber C, Segura J, Arrillaga I, et al. 2017. Dynamics of monoterpene formation in spike lavender plants. Metabolites 7:65 doi: 10.3390/metabo7040065
CrossRef Google Scholar
|
[55]
|
Mendoza-Poudereux I, Kutzner E, Huber C, Segura J, Eisenreich W, et al. 2015. Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender. Plant Physiology and Biochemistry 95:113−20 doi: 10.1016/j.plaphy.2015.07.029
CrossRef Google Scholar
|
[56]
|
Liao P, Chen X, Wang M, Bach TJ, Chye ML. 2018. Improved fruit α-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-HYDROXY-3-METHYLGLUTARYL-COA SYNTHASE1 in transgenic tomato. Plant Biotechnology Journal 16:784−96 doi: 10.1111/pbi.12828
CrossRef Google Scholar
|
[57]
|
Pokhilko A, Bou-Torrent J, Pulido P, Rodríguez-Concepción M, Ebenhöh O. 2015. Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis. New Phytologist 206:1075−85 doi: 10.1111/nph.13258
CrossRef Google Scholar
|
[58]
|
Paetzold H, Garms S, Bartram S, Wieczorek J, Urós-Gracia EM, et al. 2010. The isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Molecular Plant 3:904−16 doi: 10.1093/mp/ssq032
CrossRef Google Scholar
|