[1]
|
Jucá MM, Cysne Filho FMS, de Almeida JC, da Silva Mesquita D, de Moraes Barriga JR, et al. 2020. Flavonoids: biological activities and therapeutic potential. Natural Product Research 34:692−705 doi: 10.1080/14786419.2018.1493588
CrossRef Google Scholar
|
[2]
|
Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, et al. 2020. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnology Advances 38:107316 doi: 10.1016/j.biotechadv.2018.11.005
CrossRef Google Scholar
|
[3]
|
Shen N, Wang T, Gan Q, Liu S, Wang L, et al. 2022. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry132531 doi: 10.1016/j.foodchem.2022.132531
CrossRef Google Scholar
|
[4]
|
Tohge T, de Souza LP, Fernie AR. 2017. Current understanding of the pathways of flavonoid biosynthesis in mode l and crop plants. Journal of Experimental Botany 68:4013−28 doi: 10.1093/jxb/erx177
CrossRef Google Scholar
|
[5]
|
Ma D, Reichelt M, Yoshida K, Gershenzon J, Constabel CP. 2018. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. The Plant Journal 96:949−65 doi: 10.1111/tpj.14081
CrossRef Google Scholar
|
[6]
|
Li Y, Wang J, Wang K, Lyu S, Ren L, et al. 2022. Comparison analysis of widely-targeted metabolomics revealed the variation of potential astringent ingredients and their dynamic accumulation in the seed coats of both Carya cathayensis and Carya illinoinensis. Food Chemistry 374:131688 doi: 10.1016/j.foodchem.2021.131688
CrossRef Google Scholar
|
[7]
|
Ogo Y, Ozawa K, Ishimaru T, Murayama T, Takaiwa F. 2013. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits. Plant Biotechnology Journal 11:734−746 doi: 10.1111/pbi.12064
CrossRef Google Scholar
|
[8]
|
Ma S, Lv L, Meng C, Zhang C, Li Y. 2020. Integrative analysis of the metabolome and transcriptome of Sorghum bicolor reveals dynamic changes in flavonoids accumulation under saline–alkali stress. Journal of Agricultural and Food Chemistry 68:14781−89 doi: 10.1021/acs.jafc.0c06249
CrossRef Google Scholar
|
[9]
|
Liu X, Lu X, Gao W, Li P, Yang H. 2022. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Natural Product Reports 39:474−511 doi: 10.1039/D1NP00026H
CrossRef Google Scholar
|
[10]
|
Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, et al. 2013. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany 64:5085−97 doi: 10.1093/jxb/ert298
CrossRef Google Scholar
|
[11]
|
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science 20:176−85 doi: 10.1016/j.tplants.2014.12.001
CrossRef Google Scholar
|
[12]
|
Hassani D, Fu X, Shen Q, Khalid M, Rose JK, et al. 2020. Parallel transcriptional regulation of artemisinin and flavonoid biosynthesis. Trends in Plant Science 25:466−76 doi: 10.1016/j.tplants.2020.01.001
CrossRef Google Scholar
|
[13]
|
Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, et al. 2014. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed. New Phytologist 202:132−44 doi: 10.1111/nph.12620
CrossRef Google Scholar
|
[14]
|
Wang N, Xu H, Jiang S, Zhang Z, Lu N, et al. 2017. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). The Plant Journal 90:276−92 doi: 10.1111/tpj.13487
CrossRef Google Scholar
|
[15]
|
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660−77 doi: 10.1111/j.1365-313X.2007.03078.x
CrossRef Google Scholar
|
[16]
|
An X, Tian Y, Chen K, Liu X, Liu D, et al. 2015. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant and Cell Physiology 56:650−62 doi: 10.1093/pcp/pcu205
CrossRef Google Scholar
|
[17]
|
Wang N, Qu C, Jiang S, Chen Z, Xu H, et al. 2018. The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low-temperature conditions in red-fleshed apples. The Plant Journal 96:39−55 doi: 10.1111/tpj.14013
CrossRef Google Scholar
|
[18]
|
Zhai R, Wang Z, Zhang S, Meng G, Song L, et al. 2016. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). Journal of Experimental Botany 67:1275−84 doi: 10.1093/jxb/erv524
CrossRef Google Scholar
|
[19]
|
Shen Y, Sun T, Pan Q, Anupol N, Chen H, et al. 2019. RrMYB5- and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. Plant Biotechnology Journal 17:2078−95 doi: 10.1111/pbi.13123
CrossRef Google Scholar
|
[20]
|
Li X, Zhang L, Ahammed GJ, Li Y, Wei J, et al. 2019. Salicylic acid acts upstream of nitric oxide in elevated carbon dioxide-induced flavonoid biosynthesis in tea plant (Camellia sinensis L.). Environmental and Experimental Botany 161:367−74 doi: 10.1016/j.envexpbot.2018.11.012
CrossRef Google Scholar
|
[21]
|
Yue W, Ming Q, Lin B, Rahman K, Zheng C, et al. 2016. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology 36:215−32 doi: 10.3109/07388551.2014.923986
CrossRef Google Scholar
|
[22]
|
Liu Y, Li M, Li T, Chen Y, Zhang L, et al. 2020. Airborne fungus-induced biosynthesis of anthocyanins in Arabidopsis thaliana via jasmonic acid and salicylic acid signaling. Plant Science 300:110635 doi: 10.1016/j.plantsci.2020.110635
CrossRef Google Scholar
|
[23]
|
Ullah C, Tsai CJ, Unsicker SB, Xue L, Reichelt M, et al. 2019. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici‐populina via increased biosynthesis of catechin and proanthocyanidins. New Phytologist 221:960−75 doi: 10.1111/nph.15396
CrossRef Google Scholar
|
[24]
|
Meng J, Wang B, He G, Wang Y, Tang X, et al. 2019. Metabolomics integrated with transcriptomics reveals redirection of the phenylpropanoids metabolic flux in Ginkgo biloba. Journal of Agricultural and Food Chemistry 67:3284−91 doi: 10.1021/acs.jafc.8b06355
CrossRef Google Scholar
|
[25]
|
Wang L, Cui J, Jin B, Zhao J, Xu H, et al. 2020. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proceedings of the National Academy of Sciences of the United States of America 117:2201−10 doi: 10.1073/pnas.1916548117
CrossRef Google Scholar
|
[26]
|
LeJeune TM, Tsui HY, Parsons LB, Miller GE, Whitted C, et al. 2015. Mechanism of action of two flavone isomers targeting cancer cells with varying cell differentiation status. PLoS ONE 10:e0142928 doi: 10.1371/journal.pone.0142928
CrossRef Google Scholar
|
[27]
|
Barbalho SM, Direito R, Laurindo LF, Marton LT, Guiguer EL, et al. 2022. Ginkgo biloba in the aging process: a narrative review. Antioxidants 11:525 doi: 10.3390/antiox11030525
CrossRef Google Scholar
|
[28]
|
Boateng ID. 2022. A critical review of current technologies used to reduce ginkgotoxin, ginkgotoxin-5'-glucoside, ginkgolic acid, allergic glycoprotein, and cyanide in Ginkgo biloba L. seed. Food Chemistry 382:132408 doi: 10.1016/j.foodchem.2022.132408
CrossRef Google Scholar
|
[29]
|
Šamec D, Karalija E, Dahija S, Hassan ST. 2022. Biflavonoids: important contributions to the health benefits of Ginkgo (Ginkgo biloba L.). Plants 11:1381 doi: 10.3390/plants11101381
CrossRef Google Scholar
|
[30]
|
Zhao B, Wang L, Pang S, Jia Z, Wang L, et al. 2020. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves. Industrial Crops and Products 151:112483 doi: 10.1016/j.indcrop.2020.112483
CrossRef Google Scholar
|
[31]
|
Lu J, Xu Y, Meng Z, Cao M, Liu S, et al. 2021. Integration of morphological, physiological and multi-omics analysis reveals the optimal planting density improving leaf yield and active compound accumulation in Ginkgo biloba. Industrial Crops and Products 172:114055 doi: 10.1016/j.indcrop.2021.114055
CrossRef Google Scholar
|
[32]
|
Guo M, Yu Q, Li D, Xu K, Di Z, et al. 2023. In vitro propagation, shoot regeneration, callus induction, and suspension from lamina explants of Sorbus caloneura. Forestry Research 3:7 doi: 10.48130/FR-2023-0007
CrossRef Google Scholar
|
[33]
|
Yang X, Xu Q, Le L, Zhou T, Yu W, et al. 2023. Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.). Journal of Forestry Research 34:677−91 doi: 10.1007/s11676-022-01519-9
CrossRef Google Scholar
|
[34]
|
Gao F, Peng C, Wang H, Shen H, Yang L. 2021. Selection of culture conditions for callus induction and proliferation by somatic embryogenesis of Pinus koraiensis. Journal of Forestry Research 32:483−91 doi: 10.1007/s11676-020-01147-1
CrossRef Google Scholar
|
[35]
|
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208 doi: 10.1093/nar/gkp335
CrossRef Google Scholar
|
[36]
|
Altunkaya A. 2011. Effect of whey protein concentrate on phenolic profile and browning of fresh-cut lettuce (Lactuca Sativa). Food Chemistry 128:754−60 doi: 10.1016/j.foodchem.2011.03.101
CrossRef Google Scholar
|
[37]
|
Singh B, Kumar A, Malik AK. 2017. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis 38:820−32 doi: 10.1002/elps.201600334
CrossRef Google Scholar
|
[38]
|
Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, et al. 2012. Current approaches toward production of secondary plant metabolites. Journal of Pharmacy And Bioallied Sciences 4:10−20
Google Scholar
|
[39]
|
Cui XH, Chakrabarty D, Lee EJ, Paek KY. 2010. Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technology 101:4708−16 doi: 10.1016/j.biortech.2010.01.115
CrossRef Google Scholar
|
[40]
|
Sikora M, Świeca M. 2018. Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chemistry 239:1160−66 doi: 10.1016/j.foodchem.2017.07.067
CrossRef Google Scholar
|
[41]
|
Moon KM, Lee B, Cho WK, Lee BS, Kim CY, et al. 2018. Swertiajaponin as an anti-browning and antioxidant flavonoid. Food Chemistry 252:207−14 doi: 10.1016/j.foodchem.2018.01.053
CrossRef Google Scholar
|
[42]
|
Yang L, Stöckigt J. 2010. Trends for diverse production strategies of plant medicinal alkaloids. Natural Product Reports 27:1469−79 doi: 10.1039/c005378c
CrossRef Google Scholar
|
[43]
|
Ali B. 2021. Salicylic acid: an efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology 31:101884 doi: 10.1016/j.bcab.2020.101884
CrossRef Google Scholar
|
[44]
|
Khan T, Khan T, Hano C, Abbasi BH. 2019. Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica. Industrial Crops and Products 129:525−35 doi: 10.1016/j.indcrop.2018.12.048
CrossRef Google Scholar
|
[45]
|
Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B. 2000. Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme. Biological Chemistry 381:749−53 doi: 10.1515/BC.2000.095
CrossRef Google Scholar
|
[46]
|
Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49 doi: 10.1111/j.1365-313X.2008.03447.x
CrossRef Google Scholar
|
[47]
|
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry 72:21−34 doi: 10.1016/j.plaphy.2013.02.001
CrossRef Google Scholar
|
[48]
|
Park S, Lee H, Min MK, Ha J, Song J, et al. 2021. Functional characterization of BrF3'H, which determines the typical flavonoid profile of purple Chinese cabbage. Frontiers in Plant Science 12:793589 doi: 10.3389/fpls.2021.793589
CrossRef Google Scholar
|
[49]
|
Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, et al. 2002. A single-base deletion in soybean flavonoid 3'-hydroxylase gene is associated with gray pubescence color. Plant Molecular Biology 50:187−96 doi: 10.1023/A:1016087221334
CrossRef Google Scholar
|
[50]
|
Zabala G, Vodkin L. 2003. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3' hydroxylase. Genetics 163:295−309 doi: 10.1093/genetics/163.1.295
CrossRef Google Scholar
|
[51]
|
Li C, Yang K, Yang J, Wu H, Chen H, et al. 2022. Tartary buckwheat FtF3'H1 as a metabolic branch switch to increase anthocyanin content in transgenic plant. Frontiers in Plant Science 13:959698 doi: 10.3389/fpls.2022.959698
CrossRef Google Scholar
|
[52]
|
Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, et al. 2010. Ectopic expression of apple F3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiology 153:806−20 doi: 10.1104/pp.109.152801
CrossRef Google Scholar
|