[1]
|
Schaum N, Karkanias J, Neff NF, May AP, Quake SR, et al. 2018. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562:367−72 doi: 10.1038/s41586-018-0590-4
CrossRef Google Scholar
|
[2]
|
Han L, Wei X, Liu C, Volpe G, Zhuang Z, et al. 2022. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604:723−31 doi: 10.1038/s41586-022-04587-3
CrossRef Google Scholar
|
[3]
|
Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, et al. 2022. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375:eabk2432 doi: 10.1126/science.abk2432
CrossRef Google Scholar
|
[4]
|
Wei H. 2021. Inaugural editorial. Forestry Research 1:1 doi: 10.48130/fr-2021-0001
CrossRef Google Scholar
|
[5]
|
Li H, Yin S, Wang L, Xu N, Liu L. 2022. Transcription factor PagLBD21 functions as a repressor of secondary xylem development in Populus. Forestry Research 2:19 doi: 10.48130/fr-2022-0019
CrossRef Google Scholar
|
[6]
|
Takata N, Awano T, Nakata MT, Sano Y, Sakamoto S, et al. 2019. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. Tree Physiology 39:514−25 doi: 10.1093/treephys/tpz004
CrossRef Google Scholar
|
[7]
|
Tang X, Wang C, Chai G, Wang D, Xu H, et al. 2022. Ubiquitinated DA1 negatively regulates vascular cambium activity through modulating the stability of WOX4 in Populus. The Plant Cell 34:3364−82 doi: 10.1093/plcell/koac178
CrossRef Google Scholar
|
[8]
|
Hu J, Su H, Cao H, Wei H, Fu X, et al. 2022. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. The Plant Cell 34:2688−707 doi: 10.1093/plcell/koac107
CrossRef Google Scholar
|
[9]
|
Dai X, Zhai R, Lin J, Wang Z, Meng D, et al. 2023. Cell-type-specific PtrWOX4a and PtrVCS2 form a regulatory nexus with a histone modification system for stem cambium development in Populus trichocarpa. Nature Plants 9:96−111 doi: 10.1038/s41477-022-01315-7
CrossRef Google Scholar
|
[10]
|
Tong S, Wang Y, Chen N, Wang D, Liu B, et al. 2022. PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar. Genome Biology 23:148 doi: 10.1186/s13059-022-02718-7
CrossRef Google Scholar
|
[11]
|
Jiang Y, Tong S, Chen N, Liu B, Bai Q, et al. 2021. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus. The Plant Journal 105:1258−73 doi: 10.1111/tpj.15109
CrossRef Google Scholar
|
[12]
|
Kong L, Song Q, Wei H, Wang Y, Lin M, et al. 2023. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. New Phytologist 240:1848−67 doi: 10.1111/nph.19251
CrossRef Google Scholar
|
[13]
|
Tong S, Chen N, Wang D, Ai F, Liu B, et al. 2021. The U-box E3 ubiquitin ligase PalPUB79 positively regulates ABA-dependent drought tolerance via ubiquitination of PalWRKY77 in Populus. Plant Biotechnology Journal 19:2561−75 doi: 10.1111/pbi.13681
CrossRef Google Scholar
|
[14]
|
Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, et al. 2018. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360:212−15 doi: 10.1126/science.aan8576
CrossRef Google Scholar
|
[15]
|
Azeez A, Zhao YC, Singh RK, Yordanov YS, Dash M, et al. 2021. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nature Communications 12:1123 doi: 10.1038/s41467-021-21449-0
CrossRef Google Scholar
|
[16]
|
Singh RK, Svystun T, Aldahmash B, Jönsson AM, Bhalerao RP. 2017. Photoperiod- and temperature-mediated control of phenology in trees – a molecular perspective. New Phytologist 213:511−24 doi: 10.1111/nph.14346
CrossRef Google Scholar
|
[17]
|
Ding J, Böhlenius H, Rühl MG, Chen P, Sane S, et al. 2018. GIGANTEA-like genes control seasonal growth cessation in Populus. New Phytologist 218:1491−503 doi: 10.1111/nph.15087
CrossRef Google Scholar
|
[18]
|
Li Y, Wang D, Wang W, Yang W, Gao J, et al. 2023. A chromosome-level Populus qiongdaoensis genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determination. Molecular Ecology 32:1366−80 doi: 10.1111/mec.16566
CrossRef Google Scholar
|
[19]
|
Yang W, Wang D, Li Y, Zhang Z, Tong S, et al. 2021. A general model to explain repeated turnovers of sex determination in the Salicaceae. Molecular Biology and Evolution 38:968−80 doi: 10.1093/molbev/msaa261
CrossRef Google Scholar
|
[20]
|
Xue L, Wu H, Chen Y, Li X, Hou J, et al. 2020. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nature Communications 11:5893 doi: 10.1038/s41467-020-19559-2
CrossRef Google Scholar
|
[21]
|
Zhou R, Macaya-Sanz D, Carlson CH, Schmutz J, Jenkins JW, et al. 2020. A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biology 21:38 doi: 10.1186/s13059-020-1952-4
CrossRef Google Scholar
|
[22]
|
Efroni I, Mello A, Nawy T, Ip PL, Rahni R, et al. 2016. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165:1721−33 doi: 10.1016/j.cell.2016.04.046
CrossRef Google Scholar
|
[23]
|
Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, et al. 2019. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Developmental Cell 48:840−52 doi: 10.1016/j.devcel.2019.02.022
CrossRef Google Scholar
|
[24]
|
Jean-Baptiste K, Mcfaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, et al. 2019. Dynamics of gene expression in single root cells of Arabidopsis thaliana. The Plant Cell 31:993−1011 doi: 10.1105/tpc.18.00785
CrossRef Google Scholar
|
[25]
|
Ryu KH, Huang L, Kang HM, Schiefelbein J. 2019. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiology 179:1444−56 doi: 10.1104/pp.18.01482
CrossRef Google Scholar
|
[26]
|
Zhang T, Xu Z, Shang G, Wang J. 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Molecular Plant 12:648−60 doi: 10.1016/j.molp.2019.04.004
CrossRef Google Scholar
|
[27]
|
Turco GM, Rodriguez-Medina J, Siebert S, Han D, Valderrama-Gómez MÁ, et al. 2019. Molecular mechanisms driving switch behavior in xylem cell differentiation. Cell Reports 28:342−351.E4 doi: 10.1016/j.celrep.2019.06.041
CrossRef Google Scholar
|
[28]
|
Liu Z, Zhou Y, Guo J, Li J, Tian Z, et al. 2020. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Molecular Plant 13:1178−93 doi: 10.1016/j.molp.2020.06.010
CrossRef Google Scholar
|
[29]
|
Zhang T, Chen Y, Wang J. 2021. A single-cell analysis of the Arabidopsis vegetative shoot apex. Developmental Cell 56:1056−1074.E8 doi: 10.1016/j.devcel.2021.02.021
CrossRef Google Scholar
|
[30]
|
Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants 7:1453−60 doi: 10.1038/s41477-021-01015-8
CrossRef Google Scholar
|
[31]
|
Liu Z, Wang J, Zhou Y, Zhang Y, Qin A, et al. 2022. Identification of novel regulators required for early development of vein pattern in the cotyledons by single-cell RNA-sequencing. The Plant Journal 110:7−22 doi: 10.1111/tpj.15719
CrossRef Google Scholar
|
[32]
|
Wang Y, Huan Q, Li K, Qian W. 2021. Single-cell transcriptome atlas of the leaf and root of rice seedlings. Journal of Genetics and Genomics 48:881−98 doi: 10.1016/j.jgg.2021.06.001
CrossRef Google Scholar
|
[33]
|
Liu Q, Liang Z, Feng D, Jiang S, Wang Y, et al. 2021. Transcriptional landscape of rice roots at the single-cell resolution. Molecular Plant 14:384−94 doi: 10.1016/j.molp.2020.12.014
CrossRef Google Scholar
|
[34]
|
Zong J, Wang L, Zhu L, Bian L, Zhang B, et al. 2022. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytologist 234:494−512 doi: 10.1111/nph.18008
CrossRef Google Scholar
|
[35]
|
Ortiz-Ramírez C, Guillotin B, Xu X, Rahni R, Zhang S, et al. 2021. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374:1247−52 doi: 10.1126/science.abj2327
CrossRef Google Scholar
|
[36]
|
Xu X, Crow M, Rice BR, Li F, Harris B, et al. 2021. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell 56:557−568.E6 doi: 10.1016/j.devcel.2020.12.015
CrossRef Google Scholar
|
[37]
|
Liu H, Hu D, Du P, Wang L, Liang X, et al. 2021. Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.). Plant Biotechnology Journal 19:2261−76 doi: 10.1111/pbi.13656
CrossRef Google Scholar
|
[38]
|
Kang M, Choi Y, Kim H, Kim SG. 2022. Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent. New Phytologist 234:527−44 doi: 10.1111/nph.17992
CrossRef Google Scholar
|
[39]
|
Bai Y, Liu H, Lyu H, Su L, Xiong J, et al. 2022. Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single-cell RNA-seq. Horticulture Research 9:uhab055 doi: 10.1093/hr/uhab055
CrossRef Google Scholar
|
[40]
|
Sun X, Feng D, Liu M, Qin R, Li Y, et al. 2022. Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. Genome Biology 23:262 doi: 10.1186/s13059-022-02834-4
CrossRef Google Scholar
|
[41]
|
Guo X, Liang J, Lin R, Zhang L, Zhang Z, et al. 2022. Single-cell transcriptome reveals differentiation between adaxial and abaxial mesophyll cells in Brassica rapa. Plant Biotechnology Journal 20:2233−35 doi: 10.1111/pbi.13919
CrossRef Google Scholar
|
[42]
|
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods 6:377−82 doi: 10.1038/nmeth.1315
CrossRef Google Scholar
|
[43]
|
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, et al. 2014. Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols 9:171−81 doi: 10.1038/nprot.2014.006
CrossRef Google Scholar
|
[44]
|
Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks GJ, et al. 2020. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nature Biotechnology 38:708−14 doi: 10.1038/s41587-020-0497-0
CrossRef Google Scholar
|
[45]
|
Hashimshony T, Senderovich N, Avital G, Klochendler A, De Leeuw Y, et al. 2016. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biology 17:77 doi: 10.1186/s13059-016-0938-8
CrossRef Google Scholar
|
[46]
|
Chen H, Liao Y, Zhang G, Sun Z, Yang L, et al. 2021. High-throughput Microwell-seq 2.0 profiles massively multiplexed chemical perturbation. Cell Discovery 7:107 doi: 10.1038/s41421-021-00333-7
CrossRef Google Scholar
|
[47]
|
Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776−79 doi: 10.1126/science.1247651
CrossRef Google Scholar
|
[48]
|
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. 2015. Spatial reconstruction of single-cell gene expression data. Nature Biotechnology 33:495−502 doi: 10.1038/nbt.3192
CrossRef Google Scholar
|
[49]
|
McGinnis CS, Murrow LM, Gartner ZJ. 2019. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Systems 8:329−337.E4 doi: 10.1016/j.cels.2019.03.003
CrossRef Google Scholar
|
[50]
|
Wolock SL, Lopez R, Klein AM. 2019. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Systems 8:281−291.E9 doi: 10.1016/j.cels.2018.11.005
CrossRef Google Scholar
|
[51]
|
DePasquale EAK, Schnell DJ, Van Camp PJ, Valiente-Alandí Í, Blaxall BC, et al. 2019. DoubletDecon: deconvoluting doublets from single-cell RNA-sequencing data. Cell Reports 29:1718−1727.E8 doi: 10.1016/j.celrep.2019.09.082
CrossRef Google Scholar
|
[52]
|
Xi NM, Li JJ. 2021. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Systems 12:176−194.E6 doi: 10.1016/j.cels.2020.11.008
CrossRef Google Scholar
|
[53]
|
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, et al. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods 16:1289−96 doi: 10.1038/s41592-019-0619-0
CrossRef Google Scholar
|
[54]
|
Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, et al. 2019. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177:1873−1887.E17 doi: 10.1016/j.cell.2019.05.006
CrossRef Google Scholar
|
[55]
|
Lin Y, Ghazanfar S, Wang KYX, Gagnon-Bartsch JA, Lo KK, et al. 2019. scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets. Proceedings of the National Academy of Sciences of the United States of America 116:9775−84 doi: 10.1073/pnas.1820006116
CrossRef Google Scholar
|
[56]
|
Lotfollahi M, Wolf FA, Theis FJ. 2019. scGen predicts single-cell perturbation responses. Nature Methods 16:715−21 doi: 10.1038/s41592-019-0494-8
CrossRef Google Scholar
|
[57]
|
Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, et al. 2020. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biology 21:12 doi: 10.1186/s13059-019-1850-9
CrossRef Google Scholar
|
[58]
|
Haghverdi L, Lun ATL, Morgan MD, Marioni JC. 2018. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nature Biotechnology 36:421−27 doi: 10.1038/nbt.4091
CrossRef Google Scholar
|
[59]
|
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology 36:411−20 doi: 10.1038/nbt.4096
CrossRef Google Scholar
|
[60]
|
Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:eaah4573 doi: 10.1126/science.aah4573
CrossRef Google Scholar
|
[61]
|
Van der Maaten L, Hinton G. 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research 9:2579−605
Google Scholar
|
[62]
|
Becht E, Mcinnes L, Healy J, Dutertre CA, Kwok IWH, et al. 2019. Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology 37:38−44 doi: 10.1038/nbt.4314
CrossRef Google Scholar
|
[63]
|
Kamiya T, Borghi M, Wang P, Danku JMC, Kalmbach L, et al. 2015. The MYB36 transcription factor orchestrates Casparian strip formation. Proceedings of the National Academy of Sciences of the United States of America 112:10533−38 doi: 10.1073/pnas.1507691112
CrossRef Google Scholar
|
[64]
|
Sawchuk MG, Donner TJ, Head P, Scarpella E. 2008. Unique and overlapping expression patterns among members of photosynthesis-associated nuclear gene families in Arabidopsis. Plant Physiology 148:1908−24 doi: 10.1104/pp.108.126946
CrossRef Google Scholar
|
[65]
|
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, et al. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nature Methods 14:979−82 doi: 10.1038/nmeth.4402
CrossRef Google Scholar
|
[66]
|
Street K, Risso D, Fletcher RB, Das D, Ngai J, et al. 2018. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19:477 doi: 10.1186/s12864-018-4772-0
CrossRef Google Scholar
|
[67]
|
Herring CA, Banerjee A, Mckinley ET, Simmons AJ, Ping J, et al. 2018. Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Systems 6:37−51.E9 doi: 10.1016/j.cels.2017.10.012
CrossRef Google Scholar
|
[68]
|
Li H, Dai X, Huang X, Xu M, Wang Q, et al. 2021. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. Journal of Integrative Plant Biology 63:1906−21 doi: 10.1111/jipb.13159
CrossRef Google Scholar
|
[69]
|
Chen Y, Tong S, Jiang Y, Ai F, Feng Y, et al. 2021. Transcriptional landscape of highly lignified poplar stems at single-cell resolution. Genome Biology 22:319 doi: 10.1186/s13059-021-02537-2
CrossRef Google Scholar
|
[70]
|
Xie J, Li M, Zeng J, Li X, Zhang D. 2022. Single-cell RNA sequencing profiles of stem-differentiating xylem in poplar. Plant Biotechnology Journal 20:417−19 doi: 10.1111/pbi.13763
CrossRef Google Scholar
|
[71]
|
Wang Q, Wu Y, Peng A, Cui J, Zhao M, et al. 2022. Single-cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves. Plant Biotechnology Journal 20:2089−106 doi: 10.1111/pbi.13891
CrossRef Google Scholar
|
[72]
|
Liang X, Ma Z, Ke Y, Wang J, Wang L, et al. 2023. Single-cell transcriptomic analyses reveal cellular and molecular patterns of rubber tree response to early powdery mildew infection. Plant, Cell & Environment 46:2222−37 doi: 10.1111/pce.14585
CrossRef Google Scholar
|
[73]
|
Yu C, Hou K, Zhang H, Liang X, Chen C, et al. 2023. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. The Plant Journal 115:1243−60 doi: 10.1111/tpj.16315
CrossRef Google Scholar
|
[74]
|
Zhan X, Qiu T, Zhang H, Hou K, Liang X, et al. 2023. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves. Plant Communications 4:100630 doi: 10.1016/j.xplc.2023.100630
CrossRef Google Scholar
|
[75]
|
Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, et al. 2019. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biology 20:59 doi: 10.1186/s13059-019-1663-x
CrossRef Google Scholar
|
[76]
|
Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, et al. 2019. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496−502 doi: 10.1038/s41586-019-0969-x
CrossRef Google Scholar
|
[77]
|
La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, et al. 2018. RNA velocity of single cells. Nature 560:494−98 doi: 10.1038/s41586-018-0414-6
CrossRef Google Scholar
|
[78]
|
Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. 2020. Generalizing RNA velocity to transient cell states through dynamical modeling. Nature Biotechnology 38:1408−14 doi: 10.1038/s41587-020-0591-3
CrossRef Google Scholar
|
[79]
|
Wang K, Hou L, Wang X, Zhai X, Lu Z, et al. 2023. PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes. Nature Biotechnology doi: 10.1038/s41587-023-01887-5
CrossRef Google Scholar
|
[80]
|
Jansson S, Douglas CJ. 2007. Populus: a model system for plant biology. Annual Review of Plant Biology 58:435−58 doi: 10.1146/annurev.arplant.58.032806.103956
CrossRef Google Scholar
|
[81]
|
Douglas CJ. 2017. Populus as a model tree. In Comparative and Evolutionary Genomics of Angiosperm Trees, eds. Groover A, Cronk Q, PGG, volume 21. Cham: Springer. pp. 61−84. https://doi.org/10.1007/7397_2016_12
|
[82]
|
Taylor G. 2002. Populus: Arabidopsis for forestry. Do we need a model tree? Annals of Botany 90:681−89 doi: 10.1093/aob/mcf255
CrossRef Google Scholar
|
[83]
|
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596−604 doi: 10.1126/science.1128691
CrossRef Google Scholar
|
[84]
|
Ma T, Wang J, Zhou G, Yue Z, Hu Q, et al. 2014. Erratum: Genomic insights into salt adaptation in a desert poplar. Nature Communications 5:3454 doi: 10.1038/ncomms4454
CrossRef Google Scholar
|
[85]
|
Zhang Z, Chen Y, Zhang J, Ma X, Li Y, et al. 2020. Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica). Molecular Ecology Resources 20:781−94 doi: 10.1111/1755-0998.13142
CrossRef Google Scholar
|
[86]
|
Yang W, Wang K, Zhang J, Ma J, Liu J, et al. 2017. The draft genome sequence of a desert tree Populus pruinosa. GigaScience 6:gix075 doi: 10.1093/gigascience/gix075
CrossRef Google Scholar
|
[87]
|
Evert RF. 2006. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd edn. New Jersey: John Wiley & Sons. 601 pp.
|
[88]
|
Nieminen KM, Kauppinen L, Helariutta Y. 2004. A weed for wood? Arabidopsis as a genetic model for xylem development Plant Physiology 135:653−59 doi: 10.1104/pp.104.040212
CrossRef Google Scholar
|
[89]
|
Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, et al. 2023. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biology 24:3 doi: 10.1186/s13059-022-02845-1
CrossRef Google Scholar
|
[90]
|
Li R, Wang Z, Wang J, Li L. 2023. Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. Plant Communications 4:100665 doi: 10.1016/j.xplc.2023.100665
CrossRef Google Scholar
|
[91]
|
Qin Y, Sun M, Li W, Xu M, Shao L, et al. 2022. Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). Plant Biotechnology Journal 20:2372−88 doi: 10.1111/pbi.13918
CrossRef Google Scholar
|
[92]
|
Wang D, Hu X, Ye H, Wang Y, Yang Q, et al. 2023. Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. Genome Biology 24:49 doi: 10.1186/s13059-023-02886-0
CrossRef Google Scholar
|
[93]
|
Sun Y, Han Y, Sheng K, Yang P, Cao Y, et al. 2023. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Molecular Plant 16:694−708 doi: 10.1016/j.molp.2023.02.005
CrossRef Google Scholar
|
[94]
|
Long L, Xu F, Wang C, Zhao X, Yuan M, et al. 2023. Single-cell transcriptome atlas identified novel regulators for pigment gland morphogenesis in cotton. Plant Biotechnology Journal 21:1100−02 doi: 10.1111/pbi.14035
CrossRef Google Scholar
|
[95]
|
Ding Y, Gao W, Qin Y, Li X, Zhang Z, et al. 2023. Single-cell RNA landscape of the special fiber initiation process in Bombax ceiba. Plant Communications 4:100554 doi: 10.1016/j.xplc.2023.100554
CrossRef Google Scholar
|
[96]
|
Xia E, Li F, Tong W, Li P, Wu Q, et al. 2019. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal 17:1938−53 doi: 10.1111/pbi.13111
CrossRef Google Scholar
|
[97]
|
Tang C, Yang M, Fang Y, Luo Y, Gao S, et al. 2016. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants 2:16073 doi: 10.1038/nplants.2016.73
CrossRef Google Scholar
|
[98]
|
Hu W, Liu T, Zhu C, Wu Q, Chen L, et al. 2022. Physiological, proteomic analysis, and calcium-related gene expression reveal Taxus wallichiana var. mairei adaptability to acid rain stress under various calcium levels. Frontiers in Plant Science 13:845107 doi: 10.3389/fpls.2022.845107
CrossRef Google Scholar
|
[99]
|
Guillotin B, Rahni R, Passalacqua M, Mohammed MA, Xu X, et al. 2023. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 617:785−91 doi: 10.1038/s41586-023-06053-0
CrossRef Google Scholar
|
[100]
|
Conde D, Triozzi PM, Balmant KM, Doty AL, Miranda M, et al. 2021. A robust method of nuclei isolation for single-cell RNA sequencing of solid tissues from the plant genus Populus. PLoS ONE 16:e0251149 doi: 10.1371/journal.pone.0251149
CrossRef Google Scholar
|
[101]
|
Conde D, Triozzi PM, Pereira WJ, Schmidt HW, Balmant KM, et al. 2022. Single-nuclei transcriptome analysis of the shoot apex vascular system differentiation in Populus. Development 149:dev200632 doi: 10.1242/dev.200632
CrossRef Google Scholar
|
[102]
|
Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. 2019. The dynamics of cambial stem cell activity. Annual Review of Plant Biology 70:293−319 doi: 10.1146/annurev-arplant-050718-100402
CrossRef Google Scholar
|
[103]
|
Suer S, Agusti J, Sanchez P, Schwarz M, Greb T. 2011. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. The Plant Cell 23:3247−59 doi: 10.1105/tpc.111.087874
CrossRef Google Scholar
|
[104]
|
Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215:642−57 doi: 10.1111/nph.14631
CrossRef Google Scholar
|
[105]
|
Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR. 2015. Wood formation in trees is increased by manipulating PXY-regulated cell division. Current Biology 25:1050−55 doi: 10.1016/j.cub.2015.02.023
CrossRef Google Scholar
|
[106]
|
Xu Z, Wang Q, Zhu X, Wang G, Qin Y, et al. 2022. Plant Single Cell Transcriptome Hub (PsctH): an integrated online tool to explore the plant single-cell transcriptome landscape. Plant Biotechnology Journal 20:10−12 doi: 10.1111/pbi.13725
CrossRef Google Scholar
|
[107]
|
Jin J, Lu P, Xu Y, Tao J, Li Z, et al. 2022. PCMDB: a curated and comprehensive resource of plant cell markers. Nucleic Acids Research 50:D1448−D1455 doi: 10.1093/nar/gkab949
CrossRef Google Scholar
|
[108]
|
Chen H, Yin X, Guo L, Yao J, Ding Y, et al. 2021. PlantscRNAdb: a database for plant single-cell RNA analysis. Molecular Plant 14:855−57 doi: 10.1016/j.molp.2021.05.002
CrossRef Google Scholar
|
[109]
|
Liu Z, Yu X, Qin A, Zhao Z, Liu Y, et al. 2022. Research strategies for single-cell transcriptome analysis in plant leaves. The Plant Journal 112:27−37 doi: 10.1111/tpj.15927
CrossRef Google Scholar
|
[110]
|
Tarashansky AJ, Musser JM, Khariton M, Li P, Arendt D, et al. 2021. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 10:e66747 doi: 10.7554/eLife.66747
CrossRef Google Scholar
|
[111]
|
Liu X, Shen Q, Zhang S. 2023. Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network. Genome Research 33:96−111 doi: 10.1101/gr.276868.122
CrossRef Google Scholar
|
[112]
|
Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18:411−24 doi: 10.1038/nrg.2017.26
CrossRef Google Scholar
|
[113]
|
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97−100 doi: 10.1038/nature09916
CrossRef Google Scholar
|
[114]
|
Shafer MER. 2019. Cross-species analysis of single-cell transcriptomic data. Frontiers in Cell and Developmental Biology 7:175 doi: 10.3389/fcell.2019.00175
CrossRef Google Scholar
|
[115]
|
Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, et al. 2016. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166:1308−1323.E30 doi: 10.1016/j.cell.2016.07.054
CrossRef Google Scholar
|
[116]
|
Pandey S, Shekhar K, Regev A, Schier AF. 2018. Comprehensive identification and spatial mapping of habenular neuronal types using single-cell RNA-seq. Current Biology 28:1052−1065.E7 doi: 10.1016/j.cub.2018.02.040
CrossRef Google Scholar
|
[117]
|
Reinig J, Ruge F, Howard M, Ringrose L. 2020. A theoretical model of Polycomb/Trithorax action unites stable epigenetic memory and dynamic regulation. Nature Communications 11:4782 doi: 10.1038/s41467-020-18507-4
CrossRef Google Scholar
|
[118]
|
Li X, Chen L, Zhang Q, Sun Y, Li Q, et al. 2019. BRIF-seq: bisulfite-converted randomly integrated fragments sequencing at the single-cell level. Molecular Plant 12:438−46 doi: 10.1016/j.molp.2019.01.004
CrossRef Google Scholar
|
[119]
|
Buenostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, et al. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486−90 doi: 10.1038/nature14590
CrossRef Google Scholar
|
[120]
|
Cao J, O'day DR, Pliner HA, Kingsley PD, Deng M, et al. 2020. A human cell atlas of fetal gene expression. Science 370:eaba7721 doi: 10.1126/science.aba7721
CrossRef Google Scholar
|
[121]
|
Domcke S, Hill AJ, Daza RM, Cao J, O'day DR, et al. 2020. A human cell atlas of fetal chromatin accessibility. Science 370:eaba7612 doi: 10.1126/science.aba7612
CrossRef Google Scholar
|
[122]
|
Wang W, Chen K, Chen N, Gao J, Zhang W, et al. 2023. Chromatin accessibility dynamics insight into crosstalk between regulatory landscapes in poplar responses to multiple treatments. Tree Physiology 43:1023−41 doi: 10.1093/treephys/tpad023
CrossRef Google Scholar
|
[123]
|
Wang P, Jin S, Chen X, Wu L, Zheng Y, et al. 2021. Chromatin accessibility and translational landscapes of tea plants under chilling stress. Horticulture Research 8:96 doi: 10.1038/s41438-021-00529-8
CrossRef Google Scholar
|
[124]
|
Brown K, Takawira LT, O'neill MM, Mizrachi E, Myburg AA, et al. 2019. Identification and functional evaluation of accessible chromatin associated with wood formation in Eucalyptus grandis. New Phytologist 223:1937−51 doi: 10.1111/nph.15897
CrossRef Google Scholar
|
[125]
|
Marand AP, Chen Z, Gallavotti A, Schmitz RJ. 2021. A cis-regulatory atlas in maize at single-cell resolution. Cell 184:3041−3055.E21 doi: 10.1016/j.cell.2021.04.014
CrossRef Google Scholar
|
[126]
|
Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Molecular Plant 14:372−83 doi: 10.1016/j.molp.2021.01.001
CrossRef Google Scholar
|
[127]
|
Zhang L, He C, Lai Y, Wang Y, Kang L, et al. 2023. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. Genome Biology 24:65 doi: 10.1186/s13059-023-02908-x
CrossRef Google Scholar
|
[128]
|
Ouyang W, Luan S, Xiang X, Guo M, Zhang Y, et al. 2022. Profiling plant histone modification at single-cell resolution using snCUT&Tag. Plant Biotechnology Journal 20:420−22 doi: 10.1111/pbi.13768
CrossRef Google Scholar
|
[129]
|
Nagano T, Lubling Y, Yaffe E, Wingett SW, Dean W, et al. 2015. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nature Protocols 10:1986−2003 doi: 10.1038/nprot.2015.127
CrossRef Google Scholar
|
[130]
|
Zhou S, Jiang W, Zhao Y, Zhou D. 2019. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. Nature Plants 5:795−800 doi: 10.1038/s41477-019-0471-3
CrossRef Google Scholar
|
[131]
|
Chen J, Suo S, Tam PPL, Han JDJ, Peng G, et al. 2017. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nature Protocols 12:566−80 doi: 10.1038/nprot.2017.003
CrossRef Google Scholar
|
[132]
|
Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. 2014. Single-cell in situ RNA profiling by sequential hybridization. Nature Methods 11:360−61 doi: 10.1038/nmeth.2892
CrossRef Google Scholar
|
[133]
|
Shah S, Takei Y, Zhou W, Lubeck E, Yun J, et al. 2018. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174:363−376.E16 doi: 10.1016/j.cell.2018.05.035
CrossRef Google Scholar
|
[134]
|
Eng CHL, Lawson M, Zhu Q, Dries R, Koulena N, et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568:235−39 doi: 10.1038/s41586-019-1049-y
CrossRef Google Scholar
|
[135]
|
Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, et al. 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nature Methods 10:857−60 doi: 10.1038/nmeth.2563
CrossRef Google Scholar
|
[136]
|
Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360−63 doi: 10.1126/science.1250212
CrossRef Google Scholar
|
[137]
|
Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, et al. 2015. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nature Protocols 10:442−58 doi: 10.1038/nprot.2014.191
CrossRef Google Scholar
|
[138]
|
Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F, et al. 2021. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371:eaax2656 doi: 10.1126/science.aax2656
CrossRef Google Scholar
|
[139]
|
Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78−82 doi: 10.1126/science.aaf2403
CrossRef Google Scholar
|
[140]
|
Giacomello S, Salmén F, Terebieniec BK, Vickovic S, Navarro JF, et al. 2017. Spatially resolved transcriptome profiling in model plant species. Nature Plants 3:17061 doi: 10.1038/nplants.2017.61
CrossRef Google Scholar
|
[141]
|
Du J, Wang Y, Chen W, Xu M, Zhou R, et al. 2023. High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. Molecular Plant 16:809−28 doi: 10.1016/j.molp.2023.03.005
CrossRef Google Scholar
|
[142]
|
Chen A, Liao S, Cheng M, Ma K, Wu L, et al. 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185:1777−92 doi: 10.1016/j.cell.2022.04.003
CrossRef Google Scholar
|
[143]
|
Xia K, Sun H, Li J, Li J, Zhao Y, et al. 2022. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Developmental Cell 57:1299−1310.E4 doi: 10.1016/j.devcel.2022.04.011
CrossRef Google Scholar
|
[144]
|
Liu Y, Yang M, Deng Y, Su G, Enninful A, et al. 2020. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183:1665−1681.E18 doi: 10.1016/j.cell.2020.10.026
CrossRef Google Scholar
|
[145]
|
Deng Y, Bartosovic M, Ma S, Zhang D, Kukanja P, et al. 2022. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609:375−83 doi: 10.1038/s41586-022-05094-1
CrossRef Google Scholar
|
[146]
|
Deng Y, Bartosovic M, Kukanja P, Zhang D, Liu Y, et al. 2022. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375:681−86 doi: 10.1126/science.abg7216
CrossRef Google Scholar
|
[147]
|
Wolf FA, Angerer P, Theis FJ. 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biology 19:15 doi: 10.1186/s13059-017-1382-0
CrossRef Google Scholar
|
[148]
|
Palla G, Spitzer H, Klein M, Fischer D, Schaar AC, et al. 2022. Squidpy: a scalable framework for spatial omics analysis. Nature Methods 19:171−78 doi: 10.1038/s41592-021-01358-2
CrossRef Google Scholar
|
[149]
|
Bergenstråhle J, Larsson L, Lundeberg J. 2020. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics 21:482 doi: 10.1186/s12864-020-06832-3
CrossRef Google Scholar
|
[150]
|
Dries R, Zhu Q, Dong R, Eng CHL, Li H, et al. 2021. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biology 22:78 doi: 10.1186/s13059-021-02286-2
CrossRef Google Scholar
|
[151]
|
Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, et al. 2022. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376:eabl4896 doi: 10.1126/science.abl4896
CrossRef Google Scholar
|
[152]
|
Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, et al. 2022. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376:abl429 doi: 10.1126/science.abl429
CrossRef Google Scholar
|
[153]
|
Conde CD, Xu C, Jarvis LB, Rainbow DB, Wells SB, et al. 2022. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376:eabl5197 doi: 10.1126/science.abl5197
CrossRef Google Scholar
|
[154]
|
Suo C, Dann E, Goh I, Jardine L, Kleshchevnikov V, et al. 2022. Mapping the developing human immune system across organs. Science 376:eabo0510 doi: 10.1126/science.abo0510
CrossRef Google Scholar
|
[155]
|
Liu Z, Zhang Z. 2022. Mapping cell types across human tissues. Science 376:695−96 doi: 10.1126/science.abq2116
CrossRef Google Scholar
|