-
By performing blastp analysis using candidate sequences from Arabidopsis and rice CBL proteins, combined with redundancy elimination and domain analysis, we successfully pinpointed 11 members of the CBL gene family in the entire genome of N. tangutorum. These genes were designated NtCBL1-1 to NtCBL10-2, primarily based on their homology with AtCBLs.
Subsequently, basic information on these identified CBL genes was compiled. It was observed that these genes were unevenly distributed across six chromosomes. The amino acid lengths ranged from 213 to 321, with isoelectric points (pI) between 4.66 and 5.22. Their molecular weight (Mw) sizes ranged from 24.65 kDa to 36.84 kDa (Table 1). Furthermore, predictions of subcellular localization indicated a likelihood of expression on the plasma membrane for all identified members.
Table 1. Physicochemical properties of CBLs of N.tangutorum
Gene ID Original ID Locus Length (aa) MW (kDa) PI Subcellular localization prediction NtCBL1-1 NITAA04G1075 Chr4A 213 24.48 4.66 Plasma membrane NtCBL1-2 NITAB04G1197 Chr4B 213 24.48 4.66 Plasma membrane NtCBL3-1 NITAB02G1010 Chr2B 252 29.06 5.05 Plasma membrane NtCBL3-2 NITAA02G0832 Chr2A 226 26.10 4.82 Plasma membrane NtCBL4-1 NITAA02G2027 Chr2A 213 24.65 5.25 Plasma membrane NtCBL4-2 NITAA02G2024 Chr2A 213 24.72 5.17 Plasma membrane NtCBL4-3 NITAB02G2334 Chr2B 213 24.69 5.24 Plasma membrane NtCBL8-1 NITAB04G1638 Chr4B 321 36.84 5.22 Plasma membrane NtCBL8-2 NITAA04G1516 Chr4A 226 26.19 5.01 Plasma membrane NtCBL10-1 NITAB05G0933 Chr5B 267 30.71 4.88 Plasma membrane NtCBL10-2 NITAA05G0858 Chr5A 275 31.59 4.94 Plasma membrane Phylogenetic and synteny investigation of the CBL gene family
-
To explore the phylogenetic relationships among CBLs, we constructed a maximum likelihood phylogenetic tree using 120 CBL sequences from 13 species (Supplemental Table S3), including N. tangutorum. Our analysis revealed that these CBL genes fall mainly into five distinct categories, with most genes clustered together based on their respective gene names. Clade 5 stands out with only three CBL genes found in Selaginella moellendorffii, while the other four subgroups (1 to 4) contain 30, 19, 43, and 25 genes, respectively. NtCBL genes were identified in Clades 1, 2, 3, and 4, with Clade 3 being particularly abundant, housing up to five NtCBL genes (Fig. 1).
Figure 1.
The phylogenetic tree shows the relationships between CBL protein sequences from N. tangutorum and 12 other species. Phylogenetic analysis was performed using IQ-TREE software with maximum likelihood (ML) method and subjected to 1,000 bootstrap replicates. The modules are color coded to represent the five subclades of CBLs. NtCBLs are indicated by dark red stars. Green dots of different sizes indicate Bootstraps confidence levels above 80.
To investigate the structural relationships among the 11 NtCBLs, we performed a genomic collinearity analysis using JCVI. Seven collinear CBL pairs were identified in the N. tangutorum genome: NtCBL1-1 and NtCBL1-2, NtCBL3-1 and NtCBL3-2, NtCBL8-1 and NtCBL8-2, NtCBL10-1 and NtCBL10-2, NtCBL4-1 and NtCBL4-2, NtCBL4-1 and NtCBL4-3, and NtCBL4-2 and NtCBL4-3 (Fig. 2a). Their chromosomal distribution and sequence similarity suggest that most NtCBL gene pairs were generated through whole genome duplication/polyploidization, while some NtCBLs, such as NtCBL4-1 and NtCBL4-2, appear to have undergone tandem duplication.
Figure 2.
Genome-wide synteny analysis of CBL gene family among N. tangutorum and three other species. (a) inter-chromosomal relationships of NtCBLs (the links on the green curve indicate synteny relationships between genes). (b) Synteny analyses between the CBLs of N. tangutorum, Arabidopsis, Vitis vinifera, and Oryza sativa, the links between species indicate homologous relationships between genes.
We conducted Ka/Ks calculations for the gene pairs, uncovering that, aside from NtCBL4-1 and NtCBL4-2, which displayed a Ks value of zero, the Ka/Ks values for the remaining gene pairs were notably below 1 (Supplemental Table S4). This observation suggests that these gene pairs underwent evolutionary purifying selection, emphasizing a constrained evolutionary process. Collinearity between genes from different species often indicates functional similarities. In light of this, we performed a collinear analysis of CBL genes across Arabidopsis, rice, grape, and N. tangutorum. The outcome indicated the existence of 12, 6, and 10 collinear relationships between NtCBLs and Arabidopsis, rice, and grape, respectively (Fig. 2b). This suggests that NtCBLs may share a close evolutionary relationship with Arabidopsis and grape, while showing a relatively distant relationship with rice.
Gene structure and conserved motifs analysis of NtCBLs
-
To obtain a more comprehensive understanding of the gene structure of CBL genes in N. tangutorum, we conducted an analysis of their gene structures. We observed that all CBL genes exhibited intron structures, with gene lengths spanning from 3,667 to 6,098 base pairs and coding sequence (CDS) lengths ranging from 8 to 11 exons. Notably, a lack of a 5' UTR region was observed in NtCBL8-1, while NtCBL10-2 lacked a 3' UTR region. Conversely, typical 5' UTR and 3' UTR structures were present in the remaining genes (Fig. 3).
Figure 3.
Gene structure of the CBL gene family in N. tangutorum. The dark green boxes represent the UTR (Untranslated Region), the light green boxes represent the CDS (gene coding region), and the black lines represent the intron region.
Simultaneously, the pattern distribution within NtCBL proteins was investigated. As shown in Fig. 4, eight major motifs were identified among NtCBLs. Notably, motifs 1, 2, and 6 exhibited the highest degree of conservation of all CBLs. However, it is worth noting that motif 3 was absent in NtCBL4-1. In addition, pattern alterations were observed in four gene pairs that underwent fragment duplication, such as NtCBL8-1 and NtCBL8-2, as well as NtCBL10-1 and NtCBL10-2. Collectively, these findings suggest that functional differentiation may have occurred in NtCBLs during evolution.
Figure 4.
Conservative motifs distribution in N. tangutorum. (a) Distribution of different motifs on NtCBL genes. (b) Specific sequence information of different motifs, with larger letters indicating higher conservation.
Analysis of Cis-regulatory elements in NtCBLs
-
Promoter cis-acting elements constitute a critical region for transcription initiation, as highlighted by Hernandez-Garcia & Finer[25]. Analysis of these elements holds significant value in unraveling the potential functions of genes. To investigate plausible biological roles of the N. tangutorum CBL gene family. We examined the sequence located 3 kb upstream of the NtCBL gene initiation codon for cis-acting element analysis.
This analysis unveiled the existence of a multitude of cis-regulatory elements intricately associated with hormone and stress responses. Specifically, cis-acting elements associated with abscisic acid responsiveness, auxin-responsive elements, methyl jasmonate (MeJA) responsiveness, gibberellin responsiveness, and salicylic acid responsiveness were identified within hormone signaling pathways. In addition, a range of abiotic stress-related elements were identified, including anaerobic induction, defense and stress responsiveness, drought inducibility, and low-temperature responsiveness (Supplemental Fig. S1). Collectively, these findings strongly suggest that CBL genes may indeed participate in biological functions related to these hormone and stress response pathways.
NtCBL gene expression in various tissues and under drought and salt stress
-
Relevant studies have shown that CBLs play a role in drought and salt stress processes in plants[26]. Meanwhile, previous analysis revealed cis-acting elements associated with drought or salt stress response in the NtCBL promoter region. All these findings point to the potential involvement of NtCBLs in drought or salt stress responses in N. tangutorum.
Therefore, we have devised a set of experiments using qRT-PCR to investigate the expression patterns of NtCBL genes in different tissues and under abiotic salt stress conditions. First, we conducted an analysis of sequence similarity among NtCBLs (Supplemental Table S5). Due to the tetraploid nature of N. tangutorum, the genes within the NtCBL gene family exhibit extremely high similarity (nearly exceeding 95%). This high similarity made it nearly impossible to design specific primers. Therefore, NtCBL1-1 and NtCBL1-2 were combined as NtCBL1 for qRT-PCR, and the same approach was applied to the other genes.
The expression patterns of the NtCBL gene family in the roots, stems, and leaves of N. tangutorum were initially examined through a comparison of expression results across different tissues. It was observed that the relative expression of all NtCBLs was highest in the stem. NtCBLs could be roughly divided into two groups based on their expression patterns. In the first group, which included NtCBL-1 and NtCBL-10, gene expression was ranked stem > leaf > root. In the second group, which included NtCBL-3, NtCBL-4, and NtCBL-8, gene expression was ranked stem > root > leaf. These different expression patterns of NtCBLs suggest that they may have distinct, tissue-specific functions (Fig. 5).
Figure 5.
The gene expression characteristics of N. tangutorum CBL genes in root, stem, and leaf tissues were analyzed by fluorescence quantitative PCR. **p < 0.01, ***p < 0.001 (ANOVA followed by Tukey’s HSD).
Subsequently, we examined the expression patterns of NtCBL genes under salt and drought stress. The majority of NtCBLs demonstrated distinct responses to these stresses, although the timing and magnitude of the response differed among individual genes (Fig. 6). Under drought stress, the expression of NtCBL1 and NtCBL3 peaked at 8 h, whereas NtCBL4 and NtCBL10 reached their highest expression levels at 1 h, and NtCBL8 showed no significant change throughout the experiment. All NtCBL genes were significantly upregulated under salt stress, with their expression peaking at 1 h of salt stress and subsequently declining. These findings unequivocally illustrate that the expression of NtCBL genes is highly influenced by drought and salt stress, implying that NtCBL proteins likely contribute to N. tangutorum's response to these challenging environmental conditions.
Figure 6.
Expression patterns of NtCBL genes during drought (upper panels) and salt stress (lower panels) in N. tangutorum. 'ck' stands for untreated control, while '1h', '4h', '8h', and '24h' respectively represent different time points of salt or stress treatment, which are 1, 4, 8, and 24 h. **p < 0.01, ***p < 0.001 (ANOVA followed by Tukey’s HSD).
Exogenous expression of NtCBL1-1 enhances germination rate during salt and drought stress
-
With reference to research in other plant species[27−29] and response to drought and salt stress in N.tangutorum, we chose NtCBL1 as the representative gene for NtCBL and examined its potential role in enhancing stress resistance through overexpression in Arabidopsis. We designed specific primers only for NtCBL1 (Supplemental Table S5), and confirmed that the cloned gene was NtCBL1-1 by first-generation sequencing comparison, then constructed the 35S:NtCBL1-1 overexpression vector and transformed it into wild-type Arabidopsis via Agrobacterium-mediated transformation to obtain positive transgenic plants. We obtained multiple transgenic positive lines (Supplemental Fig. S2) and randomly selected eight of these lines for analysis of their relative expression levels. We observed variations in the expression levels among these lines (Supplemental Fig. S3). Based on their expression levels, we specifically chose lines 1, 4, and 6 and renamed them as lines 1, 2, and 3, respectively, for subsequent functional validation of NtCBL1-1.
Previous studies have shown that stress can significantly affect seed germination rates[30]. To determine whether heterologous overexpression of NtCBL1-1 affected Arabidopsis germination, we sowed seeds of wild-type Arabidopsis and three independent transgenic lines on ½ MS medium containing 0 or 150 mM NaCl or 300 mM mannitol, and we observed their germination rate after 7 d. Under normal growing conditions, wild-type and transgenic lines germinated rapidly, and their germination rates were similar (Fig. 7). Under 150 mM salt stress, the germination rate of wild-type Arabidopsis was reduced, and the three overexpression lines showed higher germination than wild Arabidopsis. Under drought stress, both wild-type and transgenic lines showed reduced germination compared to control conditions, but the germination rate of transgenic lines was significantly higher than that of wild-type lines. Thus, overexpression of NtCBL1-1 in Arabidopsis ameliorated—at least in part—the inhibition of germination caused by salt and drought stress.
Figure 7.
Heterologous expression of NtCBL1-1 increases Arabidopsis germination rates under salt and drought stress. (a)−(c) Phenotypic charts of germination rates under normal growth conditions, 150 mM NaCl treatment, and 300 mM mannitol treatment, with about 70 seeds per dish and three replicates for each experiment. (d) Germination rate statistics of Arabidopsis overexpressing NtCBL1-1 under normal growth conditions, 150 mM NaCl treatment, and 300 mM mannitol treatment. *p < 0.05, **p < 0.01, ***p < 0.001 (ANOVA followed by Tukey’s HSD).
Exogenous expression of NtCBL1-1 enhances drought and salt stress tolerance in Arabidopsis
-
To assess whether the heterologous expression of NtCBL1-1 impacts the salt and drought tolerance of Arabidopsis, we subjected soil-grown seedlings to irrigation with 200 mM NaCl or 300 mM mannitol for a duration of 7 d. On the first day of salt stress, leaves of wild-type Arabidopsis began to show slight wilting, but transgenic plants overexpressing NtCBL1-1 showed no visible changes (Fig. 8a, Supplemental Fig. S4). On day 3, leaf yellowing became visible on wild-type Arabidopsis, and the transgenic plants began to wilt. On day 5, leaves of wild-type Arabidopsis were severely wilted and showed large areas of yellowing, whereas leaves of the transgenic plants had begun to turn yellow. On day 7, wild-type plants were completely withered, but only some leaves of the transgenic plants were withered and yellow.
Figure 8.
Heterologous overexpression of NtCBL1-1 increased salt tolerance in Arabidopsis. (a) Wild-type Arabidopsis phenotypes and overexpression lines exposed to 200 mM NaCl for 0–7 d. (b) Chlorophyll content, soluble protein content, and MDA content after 0–5 d of exposure to 200 mM NaCl. Statistical significance denoted as *p < 0.05, **p < 0.01, ***p < 0.001 (ANOVA followed by Tukey’s HSD).
Since the wild-type plants had nearly died by the 7th day of the salt stress treatment, we conducted physiological measurements exclusively on plants harvested on days 0, 3, and 5. Before salt stress treatment, there were no significant differences in chlorophyll content between wild-type and transgenic lines. Chlorophyll content decreased as the duration of salt stress increased in both wild-type and transgenic Arabidopsis, but chlorophyll content was significantly higher in transgenic lines than in the wild type. This difference was most striking on day 5 (Fig. 8b). Soluble protein content showed a trend similar to that of chlorophyll content; it was lower in the wild type than in the transgenic lines under salt stress. Although all genotypes showed accumulation of MDA during the stress treatment, MDA content was significantly lower in the transgenic lines.
The transgenic lines also showed less severe stress symptoms than the wild type in response to simulated drought (Fig. 9a, Supplemental Fig. S5). In contrast to the salt stress results, there were no significant differences in MDA or soluble protein content on day 3 of drought stress. However, on day 5, the MDA content was significantly higher in the wild type than in the transgenic lines, and the soluble protein content was significantly lower (Fig. 9b). Thus, overexpression of NtCBL1-1 also improved drought stress tolerance of transgenic Arabidopsis.
Figure 9.
Heterologous overexpression of NtCBL1-1 in Arabidopsis increased drought stress tolerance. (a) Phenotypic comparison between wild-type Arabidopsis and overexpression lines under 300 mM mannitol exposure for 0–7 d. (b) Chlorophyll content, soluble protein content, and MDA content of wild-type Arabidopsis and overexpression lines exposed to 300 mM mannitol for 0–5 d. Statistical significance denoted as *p < 0.05, **p < 0.01 (ANOVA followed by Tukey’s HSD).
-
All data generated or analyzed during this study are included in this article and its supplementary table files. The Gene sequence, CDS sequence, and GFF annotation information of all NtCBL gene families are included in the supplementary files.
-
About this article
Cite this article
Zhu L, Wu J, Li M, Fang H, Zhang J, et al. 2023. Genome-wide discovery of CBL genes in Nitraria tangutorum Bobr. and functional analysis of NtCBL1-1 under drought and salt stress. Forestry Research 3:28 doi: 10.48130/FR-2023-0028
Genome-wide discovery of CBL genes in Nitraria tangutorum Bobr. and functional analysis of NtCBL1-1 under drought and salt stress
- Received: 09 September 2023
- Accepted: 29 November 2023
- Published online: 22 December 2023
Abstract: Calcineurin B-like (CBL) proteins are a class of important Ca2+ receptors that play key roles in plant stress response. CBLs have been shown to participate in responses to abiotic stresses such as drought, salt, and cold in many plant species, including Arabidopsis and rice. However, little is known about their potential functions in the desert halophyte Nitraria tangutorum. Here, we have identified 11 CBL genes distributed across six chromosomes of N. tangutorum and categorized them into four groups through phylogenetic analysis. Synteny analysis showed that they have strong collinear relationships and have undergone purifying selection during their evolution. NtCBL promoter regions contain a variety of cis-acting elements related to hormone and environmental stress responses. Real-time quantitative PCR showed that the expression of NtCBLs differed significantly among various tissues and was upregulated by salt and drought stress. We chose NtCBL1-1 for an in-depth functional characterization and observed that transgenic Arabidopsis plants expressing NtCBL1-1 exhibited increased tolerance to both drought and salt stress. Compared to wild-type Arabidopsis, transgenic lines showed higher germination rates, slower chlorophyll degradation, more soluble proteins, and reduced accumulation of the oxidative stress marker malondialdehyde. These findings indicate that NtCBL1-1 plays a significant role in responding to drought and salt stress, laying the foundation for further investigations into the functional mechanisms of NtCBL genes in N. tangutorum.
-
Key words:
- CBL /
- Nitraria tangutorum Bobr. /
- Salt stress /
- Drought stress