[1]
|
Muir WH, Hildebrandt AC, Riker AJ. 1954. Plant tissue cultures produced from single isolated cells. Science 119:877−78 doi: 10.1126/science.119.3103.877.b
CrossRef Google Scholar
|
[2]
|
Steward FC, Mapes MO, Mears K. 1958. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. American Journal of Botany 45:705−8 doi: 10.1002/j.1537-2197.1958.tb10599.x
CrossRef Google Scholar
|
[3]
|
Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K. 2016. Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442−51 doi: 10.1242/dev.134668
CrossRef Google Scholar
|
[4]
|
Salaün C, Lepiniec L, Dubreucq B. 2021. Genetic and molecular control of somatic embryogenesis. Plants 10:1467 doi: 10.3390/plants10071467
CrossRef Google Scholar
|
[5]
|
Salaj T, Matusova R, Salaj J. 2015. Conifer somatic embryogenesis – an efficient plant regeneration system for theoretical studies and mass propagation. Dendrobiology 74:69−76 doi: 10.12657/denbio.074.007
CrossRef Google Scholar
|
[6]
|
Hakman I, Fowke LC, Von Arnold S, Eriksson T. 1985. The development of somatic embryos in tissue-cultures initiated from immature embryos of Picea-abies (Norway Spruce). Plant Science 38:53−59 doi: 10.1016/0168-9452(85)90079-2
CrossRef Google Scholar
|
[7]
|
Zhou L, Yarra R, Jin L, Yang Y, Cao H, et al. 2022. Identification and expression analysis of histone modification gene (HM) family during somatic embryogenesis of oil palm. BMC Genomics 23:11 doi: 10.1186/s12864-021-08245-2
CrossRef Google Scholar
|
[8]
|
Pérez M, Viejo M, LaCuesta M, Toorop P, Cañal MJ. 2015. Epigenetic and hormonal profile during maturation of Quercus Suber L. somatic embryos. Journal of Plant Physiology 173:51−61 doi: 10.1016/j.jplph.2014.07.028
CrossRef Google Scholar
|
[9]
|
Yang J, Zhou X, Wu S, Gu D, Zeng L, Yang Z. 2021. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food Research International 142:110183 doi: 10.1016/j.foodres.2021.110183
CrossRef Google Scholar
|
[10]
|
Zhang H, Lang Z, Zhu J. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology 19:489−506 doi: 10.1038/s41580-018-0016-z
CrossRef Google Scholar
|
[11]
|
Bird AP. 1987. CpG islands as gene markers in the vertebrate nucleus. Trends in Genetics 3:342−47 doi: 10.1016/0168-9525(87)90294-0
CrossRef Google Scholar
|
[12]
|
Gehring M, Bubb KL, Henikoff S. 2009. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447−51 doi: 10.1126/science.1171609
CrossRef Google Scholar
|
[13]
|
Rajkumar MS, Gupta K, Khemka NK, Garg R, Jain M. 2020. DNA methylation reprogramming during seed development and its functional relevance in seed size/weight determination in chickpea. Communications Biology 3:340 doi: 10.1038/s42003-020-1059-1
CrossRef Google Scholar
|
[14]
|
Wang Y, Xue X, Zhu JK, Dong J. 2016. Demethylation of ERECTA receptor genes by IBM1 histone demethylase affects stomatal development. Development 143:4452−61 doi: 10.1242/dev.129932
CrossRef Google Scholar
|
[15]
|
Cheng J, Niu Q, Zhang B, Chen K, Yang R, et al. 2018. Downregulation of RdDM during strawberry fruit ripening. Genome Biology 19:212 doi: 10.1186/s13059-018-1587-x
CrossRef Google Scholar
|
[16]
|
Ji Y, Wang A. 2023. Recent advances in epigenetic triggering of climacteric fruit ripening. Plant Physiology 192:1711−17 doi: 10.1093/plphys/kiad206
CrossRef Google Scholar
|
[17]
|
López Sánchez A, Stassen JHM, Furci L, Smith LM, Ton J. 2016. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. The Plant Journal 88:361−74 doi: 10.1111/tpj.13252
CrossRef Google Scholar
|
[18]
|
López ME, Roquis D, Becker C, Denoyes B, Bucher E. 2022. DNA methylation dynamics during stress response in woodland strawberry (Fragaria vesca). Horticulture Research 9:uhac174 doi: 10.1093/hr/uhac174
CrossRef Google Scholar
|
[19]
|
Guo H, Fan Y, Guo H, Wu J, Yu X, et al. 2020. Somatic embryogenesis critical initiation stage-specific mCHH hypomethylation reveals epigenetic basis underlying embryogenic redifferentiation in cotton. Plant Biotechnology Journal 18:1648−50 doi: 10.1111/pbi.13336
CrossRef Google Scholar
|
[20]
|
Ji L, Mathioni SM, Johnson S, Tucker D, Bewick AJ, et al. 2019. Genome-wide reinforcement of DNA methylation occurs during somatic embryogenesis in soybean. The Plant cell 31:2315−31 doi: 10.1105/tpc.19.00255
CrossRef Google Scholar
|
[21]
|
Zhang J, Yin D. 2022. Research advances in somatic embryogenesis of forest trees based on DNA methylation. World Forestry Research 35:36−41 doi: 10.13348/j.cnki.sjlyyj.2022.0083.y
CrossRef Google Scholar
|
[22]
|
Chen X, Xu X, Shen X, Li H, Zhu C, et al. 2020. Genome-wide investigation of DNA methylation dynamics reveals a critical role of DNA demethylation during the early somatic embryogenesis of Dimocarpus longan Lour. Tree Physiology 40:1807−26 doi: 10.1093/treephys/tpaa097
CrossRef Google Scholar
|
[23]
|
Ausin I, Feng S, Yu C, Liu W, Kuo HY, et al. 2016. DNA methylome of the 20-gigabase Norway spruce genome. Proceedings of the National Academy of Sciences of the United States of America 113:E8106−E8113 doi: 10.1073/pnas.1618019113
CrossRef Google Scholar
|
[24]
|
Cui Y, Gao Y, Zhao R, Zhao J, Li Y, et al. 2021. Transcriptomic, metabolomic, and physiological analyses reveal that the culture temperatures modulate the cryotolerance and embryogenicity of developing somatic embryos in Picea glauca. Frontiers in Plant Science 12:694229 doi: 10.3389/fpls.2021.694229
CrossRef Google Scholar
|
[25]
|
Litvay JD, Verma DC, Johnson MA. 1985. Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Reports 4:325−28 doi: 10.1007/BF00269890
CrossRef Google Scholar
|
[26]
|
Towill LE, Mazur P. 1975. Studies on the reduction of 2,3,5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Canadian Journal of Botany 53:1097−102 doi: 10.1139/b75-129
CrossRef Google Scholar
|
[27]
|
Borges A, Silva Rosa M, Recchia GH, de Queiroz-Silva JR, de Andrade Bressan E, et al. 2009. CTAB methods for DNA extraction of sweetpotato for microsatellite analysis. Scientia Agricola 66:529−34 doi: 10.1590/S0103-90162009000400015
CrossRef Google Scholar
|
[28]
|
Gao Y, Hao JL, Wang Z, Song KJ, Ye JH, et al. 2019. DNA methylation levels in different tissues in tea plant via an optimized HPLC method. Horticulture, Environment, and Biotechnology 60:967−74 doi: 10.1007/s13580-019-00180-2
CrossRef Google Scholar
|
[29]
|
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497:579−84 doi: 10.1038/nature12211
CrossRef Google Scholar
|
[30]
|
Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology 4:17 doi: 10.2202/1544-6115.1128
CrossRef Google Scholar
|
[31]
|
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559 doi: 10.1186/1471-2105-9-559
CrossRef Google Scholar
|
[32]
|
Gao Y, Cui Y, Zhao R, Chen X, Zhang J, et al. 2022. Cryo-treatment enhances the embryogenicity of mature somatic embryos via the lncRNA-miRNA-mRNA network in white spruce. International Journal of Molecular Sciences 23:1111 doi: 10.3390/ijms23031111
CrossRef Google Scholar
|
[33]
|
Vestman D, Larsson E, Uddenberg D, Cairney J, Clapham D, et al. 2011. Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genetics & Genomes 7:347−62
Google Scholar
|
[34]
|
Hackerott S, Virdis F, Flood PJ, Souto DG, Paez W, et al. 2023. Relationships between phenotypic plasticity and epigenetic variation in two Caribbean Acropora corals. Molecular Ecology 32:4814−28 doi: 10.1111/mec.17072
CrossRef Google Scholar
|
[35]
|
Cantão IH, Tesser RB, Stumpp T. 2017. An initial investigation of an alternative model to study rat primordial germ cell epigenetic reprogramming. Biological Procedures Online 19:9 doi: 10.1186/s12575-017-0058-1
CrossRef Google Scholar
|
[36]
|
Liu J, Xie Y, Wang F, Zhang L, Zhang Y, et al. 2013. Cytotoxicity of 5-Aza-2'-deoxycytidine against gastric cancer involves DNA damage in an ATM-P53 dependent signaling pathway and demethylation of P16INK4A. Biomedicine & Pharmacotherapy 67:78−87 doi: 10.1016/j.biopha.2012.10.015
CrossRef Google Scholar
|
[37]
|
Cao Q, Li Z, Ni S, Li T, Liu C. 2020. Effects of DNA methylation on germ layer differentiation of Xenopus laevis. Journal of Nanjing Medical University Natural Sciences Edition 40:1756−60 doi: 10.7655/NYDXBNS20201203
CrossRef Google Scholar
|
[38]
|
Ma C, Jing C, Chang B, Yan J, Liang B, et al. 2018. The effect of promoter methylation on MdMYB1 expression determines the level of anthocyanin accumulation in skins of two non-red apple cultivars. BMC Plant Biology 18:108 doi: 10.1186/s12870-018-1320-7
CrossRef Google Scholar
|
[39]
|
Zhou Z, Liu C, Qin M, Li W, Hou J, et al. 2022. Promoter DNA hypermethylation of TaGli-γ-2.1 positively regulates gluten strength in bread wheat. Journal of Advanced Research 36:163−73 doi: 10.1016/j.jare.2021.06.021
CrossRef Google Scholar
|
[40]
|
Wang Q, Liu S, Lu C, La Y, Dai J, et al. 2019. Roles of CRWN-family proteins in protecting genomic DNA against oxidative damage. Journal of Plant Physiology 233:20−30 doi: 10.1016/j.jplph.2018.12.005
CrossRef Google Scholar
|
[41]
|
Chakrabarti M, Mukherjee A. 2021. Investigating the underlying mechanism of cadmium-induced plant adaptive response to genotoxic stress. Ecotoxicology and Environmental Safety 209:111817 doi: 10.1016/j.ecoenv.2020.111817
CrossRef Google Scholar
|
[42]
|
Wei LR, Qin WY, Li YC. 2019. Effects of demethylating reagent 5-aza-2′-deoxycytidine on the growth and cephalotaxine production in Cephalotaxus mannii suspension cells. Plant Cell, Tissue and Organ Culture (PCTOC) 139:359−68 doi: 10.1007/s11240-019-01689-1
CrossRef Google Scholar
|
[43]
|
Nowicka A, Juzoń K, Krzewska M, Dziurka M, Dubas E, et al. 2019. Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. Plant Science 287:110189 doi: 10.1016/j.plantsci.2019.110189
CrossRef Google Scholar
|
[44]
|
Munksgaard D, Mattsson O, Okkels FT. 1995. Somatic embryo development in carrot is associated with an increase in levels of S-adenosylmethionine, S-adenosylhomocysteine and DNA methylation. Physiologia Plantarum 93:5−10 doi: 10.1034/j.1399-3054.1995.930102.x
CrossRef Google Scholar
|
[45]
|
Chakraborty T, Kendall T, Grover JW, Mosher RA. 2021. Embryo CHH hypermethylation is mediated by RdDM and is autonomously directed in Brassica rapa. Genome Biology 22:140 doi: 10.1186/s13059-021-02358-3
CrossRef Google Scholar
|
[46]
|
Nic-Can GI, López-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, et al. 2013. New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS ONE 8:e72160 doi: 10.1371/journal.pone.0072160
CrossRef Google Scholar
|
[47]
|
Grzybkowska D, Morończyk J, Wójcikowska B, Gaj MD. 2018. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Plant Growth Regulation 85:243−56 doi: 10.1007/s10725-018-0389-1
CrossRef Google Scholar
|
[48]
|
Finnegan EJ, Genger RK, Kovac K, Peacock WJ, Dennis ES. 1998. DNA methylation and the promotion of flowering by vernalization. Proceedings of the National Academy of Sciences of the United States of America 95:5824−29 doi: 10.1073/pnas.95.10.5824
CrossRef Google Scholar
|
[49]
|
Kumar S, Mohapatra T. 2021. Dynamics of DNA methylation and its functions in plant growth and development. Frontiers in Plant Science 12:596236 doi: 10.3389/fpls.2021.596236
CrossRef Google Scholar
|
[50]
|
Yamaguchi N. 2021. Removal of H3K27me3 by JMJ proteins controls plant development and environmental responses in Arabidopsis. Frontiers in Plant Science 12:687416 doi: 10.3389/fpls.2021.687416
CrossRef Google Scholar
|
[51]
|
Le Masson I, Jauvion V, Bouteiller N, Rivard M, Elmayan T, et al. 2012. Mutations in the Arabidopsis H3K4me2/3 demethylase JMJ14 suppress posttranscriptional gene silencing by decreasing transgene transcription. The Plant Cell 24:3603−12 doi: 10.1105/tpc.112.103119
CrossRef Google Scholar
|
[52]
|
Li D, Liu R, Singh D, Yuan X, Kachroo P, et al. 2020. JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. New Phytologist 225:2108−21 doi: 10.1111/nph.16270
CrossRef Google Scholar
|
[53]
|
Zhu T, Moschou PN, Alvarez JM, Sohlberg JJ, von Arnold S. 2016. WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce. BMC Plant Biology 16:19 doi: 10.1186/s12870-016-0706-7
CrossRef Google Scholar
|
[54]
|
Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022. BABY BOOM regulates early embryo and endosperm development. Proceedings of the National Academy of Sciences of the United States of America 119:e2201761119 doi: 10.1073/pnas.2201761119
CrossRef Google Scholar
|
[55]
|
Ahn CH, Han JY, Park HS, Yoon HW, Shin JW, et al. 2023. Isolation and expression of transcription factors involved in somatic embryo development by transcriptome analysis of embryogenic callus of Thuja koraiensis. Horticulturae 9:131 doi: 10.3390/horticulturae9020131
CrossRef Google Scholar
|
[56]
|
Fischerova L, Fischer L, Vondrakova Z, Vagner M. 2008. Expression of the gene encoding transcription factor PaVP1 differs in Picea abies embryogenic lines depending on their ability to develop somatic embryos. Plant Cell Reports 27:435−41 doi: 10.1007/s00299-007-0469-6
CrossRef Google Scholar
|
[57]
|
Yamada M, Tanaka S, Miyazaki T, Aida M. 2022. Expression of the auxin biosynthetic genes YUCCA1 and YUCCA4 is dependent on the boundary regulators CUP-SHAPED COTYLEDON genes in the Arabidopsis thaliana embryo. Plant Biotechnology 39:37−42 doi: 10.5511/plantbiotechnology.21.0924a
CrossRef Google Scholar
|
[58]
|
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, et al. 2019. Signaling overview of plant somatic embryogenesis. Frontiers in Plant Science 10:77 doi: 10.3389/fpls.2019.00077
CrossRef Google Scholar
|
[59]
|
Calabuig-Serna A, Mir R, Arjona P, Seguí-Simarro JM. 2023. Calcium dynamics and modulation in carrot somatic embryogenesis. Frontiers in Plant Science 14:1150198 doi: 10.3389/fpls.2023.1150198
CrossRef Google Scholar
|
[60]
|
Tao L, Yang Y, Wang Q, You X. 2012. Callose deposition is required for somatic embryogenesis in plasmolyzed Eleutherococcus senticosus zygotic embryos. International Journal of Molecular Sciences 13:14115−26 doi: 10.3390/ijms131114115
CrossRef Google Scholar
|
[61]
|
Dubois T, Guedira M, Dubois J, Vasseur J. 1991. Direct somatic embryogenesis in leaves of Cichorium. Protoplasma 162:120−27 doi: 10.1007/BF02562555
CrossRef Google Scholar
|
[62]
|
Chirinos-Arias MC, Spampinato CP. 2021. Role of the mismatch repair protein MSH7 in Arabidopsis adaptation to acute salt stress. Plant Physiology and Biochemistry 169:280−90 doi: 10.1016/j.plaphy.2021.11.029
CrossRef Google Scholar
|
[63]
|
Zheng WJ, Li WQ, Peng Y, Shao Y, Tang L, et al. 2022. E2Fs co-participate in cadmium stress response through activation of MSHs during the cell cycle. Frontiers in Plant Science 13:1068769 doi: 10.3389/fpls.2022.1068769
CrossRef Google Scholar
|
[64]
|
Ashapkin VV, Kutueva LI, Aleksandrushkina NI, Vanyushin BF. 2020. Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses. International Journal of Molecular Sciences 21:7457 doi: 10.3390/ijms21207457
CrossRef Google Scholar
|