Abhilash PC, Jamil S, Singh N. 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnology Advances 27:474−88 doi: 10.1016/j.biotechadv.2009.04.002
CrossRef Google Scholar
|
Ai H, Cao Y, Jain A, Wang XW, Hu Z, et al. 2020. The ferroxidase LPR5 functions in the maintenance of phosphate homeostasis and is required for normal growth and development of rice. Journal of Experimental Botany 71:4828−42 doi: 10.1093/jxb/eraa211
CrossRef Google Scholar
|
Alagić SČ, Maluckov BS, Radojičić VB. 2015. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review Clean Technologies and Environmental Policy 17:597−614 doi: 10.1007/s10098-014-0840-6
CrossRef Google Scholar
|
Barber JL, Thomas GO, Kerstiens G, Jones KC. 2004. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environmental Pollution 128:99−138 doi: 10.1016/j.envpol.2003.08.024
CrossRef Google Scholar
|
Bradstreet RB. 1954. Determination of nitro nitrogen by Kjeldahl Method. Analytical Chemistry 26(1):235−36 doi: 10.1021/ac60085a044
CrossRef Google Scholar
|
Cao Y, Ai H, Jain A, Wu X, Zhang L, et al. 2016. Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice. BMC Plant Biology 16:210 doi: 10.1186/s12870-016-0853-x
CrossRef Google Scholar
|
Gao Y, Zhu L. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169−78 doi: 10.1016/j.chemosphere.2004.01.037
CrossRef Google Scholar
|
Hamdi H, Benzarti S, Manusadžianas L, Aoyama I, Jedidi N. 2007. Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology and Biochemistry 39:1926−35 doi: 10.1016/j.soilbio.2007.02.008
CrossRef Google Scholar
|
Jiao XC, Xu FL, Dawson R, Chen SH, Tao S. 2007. Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots. Environmental pollution 148:230−35 doi: 10.1016/j.envpol.2006.10.025
CrossRef Google Scholar
|
Kang F, Chen D, Gao Y, Zhang Y. 2010. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biology 10:210 doi: 10.1186/1471-2229-10-210
CrossRef Google Scholar
|
Kästner M, Breuer-Jammali M, Mahro B. 1998. Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Applied and Environmental Microbiology 64(1):359−62 doi: 10.1128/AEM.64.1.359-362.1998
CrossRef Google Scholar
|
Kummerová M, Kmentová E. 2004. Photoinduced toxicity of fluoranthene on germination and early development of plant seedling. Chemosphere 56:387−93 doi: 10.1016/j.chemosphere.2004.01.007
CrossRef Google Scholar
|
Kummerová M, Zezulka Š, Babula P, Váňová L. 2013. Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Chemosphere 90:665−73 doi: 10.1016/j.chemosphere.2012.09.047
CrossRef Google Scholar
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
Marschner H. 1995. Mineral Nutrition of Higher Plants. London, San Diego: Academic Press.
Google Scholar
|
Raghothama KG. 1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50:665−93 doi: 10.1146/annurev.arplant.50.1.665
CrossRef Google Scholar
|
Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T. 2006. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell and Environment 29(1):115−25 doi: 10.1111/j.1365-3040.2005.01405.x
CrossRef Google Scholar
|
Shen Y, Gu R, Sheng Y, Zeng N, Zhan X. 2020. Acropetal translocation of phenanthrene in wheat seedlings: Xylem or phloem pathway? Environmental Pollution 260:114055 doi: 10.1016/j.envpol.2020.114055
CrossRef Google Scholar
|
Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, et al. 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nature Genetics 39:792−96 doi: 10.1038/ng2041
CrossRef Google Scholar
|
Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S. 2004. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. The Plant Journal 37(6):801−14 doi: 10.1111/j.1365-313X.2004.02005.x
CrossRef Google Scholar
|
Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, et al. 2009. ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proceedings of the National Academy of Sciences of the United States of America 106(33):14174−79 doi: 10.1073/pnas.0901778106
CrossRef Google Scholar
|
Váňová L, Kummerová M, Klemš M, Zezulka Š. 2009. Fluoranthene influences endogenous abscisic acid level and primary photosynthetic processes in pea (Pisum sativum L.) plants in vitro. Plant Growth Regulation 57:39−47 doi: 10.1007/s10725-008-9318-z
CrossRef Google Scholar
|
Wang X, Jain A, Huang X, Lan X, Xu L, et al. 2021. Reducing phenanthrene uptake and translocation, and accumulation in the seeds by overexpressing OsNRT2.3b in rice. Science of the Total Environment 761:143690 doi: 10.1016/j.scitotenv.2020.143690
CrossRef Google Scholar
|
Wild E, Dent J, Thomas GO, Jones KC. 2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environmental Science & Technology 139(10):3695−702 doi: 10.1021/es048136a
CrossRef Google Scholar
|
Wu F, Tian K, Wang J, Bao H, Luo W, et al. 2019. Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content. Ecotoxicology and Environmental Safety 183:109567 doi: 10.1016/j.ecoenv.2019.109567
CrossRef Google Scholar
|
Wu N, Huang H, Zhang S, Zhu Y, Christie P, et al. 2009. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. Environmental pollution 157:1613−18 doi: 10.1016/j.envpol.2008.12.022
CrossRef Google Scholar
|
Xu G, Fan X, Miller AJ. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63:153−82 doi: 10.1146/annurev-arplant-042811-105532
CrossRef Google Scholar
|
Yang Q, Lu S, Wang H, Li J, Shen Y. 2016. Interaction of uptake and acropetal translocation between phenanthrene and phosphate in wheat roots. Asian Journal of Ecotoxicology 11(3):219−225
Google Scholar
|
Zhan X, Yuan J, Yue L, Xu G, Hu B, et al. 2015. Response of uptake and translocation of phenanthrene to nitrogen form in lettuce and wheat seedlings. Environmental Science and Pollution Research 22:6280−7 doi: 10.1007/s11356-014-3834-3
CrossRef Google Scholar
|