Abdelfattah A, Tack AJM, Wasserman B, Liu J, Berg G, et al. 2022. Evidence for host–microbiome co-evolution in apple. New Phytologist 234:2088−100 doi: 10.1111/nph.17820
CrossRef Google Scholar
|
Abdullaeva Y, Ambika Manirajan B, Honermeier B, Schnell S, Cardinale M. 2021. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. Journal of Advanced Research 31:75−86 doi: 10.1016/j.jare.2020.12.008
CrossRef Google Scholar
|
Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science 26:1−20 doi: 10.1016/j.jksus.2013.05.001
CrossRef Google Scholar
|
Ahmad F, Ahmad I, Khan MS. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research 163:173−81 doi: 10.1016/j.micres.2006.04.001
CrossRef Google Scholar
|
Bargaz A, Elhaissoufi W, Khourchi S, Benmrid B, Borden KA, et al. 2021. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiological Research 252:126842 doi: 10.1016/j.micres.2021.126842
CrossRef Google Scholar
|
Battisti M, Moretti B, Sacco D, Grignani C, Zavattaro L. 2022. Soil Olsen P response to different phosphorus fertilization strategies in long-term experiments in NW Italy. Soil Use and Management 38:549−563 doi: 10.1111/sum.12701
CrossRef Google Scholar
|
Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17:478−86 doi: 10.1016/j.tplants.2012.04.001
CrossRef Google Scholar
|
Bi QF, Zheng BX, Lin XY, Li KJ, Liu XP, et al. 2018. The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. Chemical Geology 483:56−64 doi: 10.1016/j.chemgeo.2018.02.013
CrossRef Google Scholar
|
Billah M, Khan M, Bano A, Hassan TU, Munir A, et al. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal 36:904−16 doi: 10.1080/01490451.2019.1654043
CrossRef Google Scholar
|
Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, et al. 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host & Microbe 17:392−403 doi: 10.1016/j.chom.2015.01.011
CrossRef Google Scholar
|
Bünemann EK, Oberson A, Liebisch F, Keller F, Annaheim KE, et al. 2012. Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability. Soil Biology and Biochemistry 51:84−95 doi: 10.1016/j.soilbio.2012.04.012
CrossRef Google Scholar
|
Carrillo J, Ingwell LL, Li X, Kaplan I. 2019. Domesticated tomatoes are more vulnerable to negative plant–soil feedbacks than their wild relatives. Journal of Ecology 107:1753−66 doi: 10.1111/1365-2745.13157
CrossRef Google Scholar
|
Castagno LN, Sannazzaro AI, Gonzalez ME, Pieckenstain FL, Estrella MJ. 2021. Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Annals of Applied Biology 178:256−67 doi: 10.1111/aab.12673
CrossRef Google Scholar
|
Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, et al. 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513−18 doi: 10.1038/nature21417
CrossRef Google Scholar
|
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890 doi: 10.1093/bioinformatics/bty560
CrossRef Google Scholar
|
Clausing S, Polle A. 2020. Mycorrhizal phosphorus efficiencies and microbial competition drive root P uptake. Frontiers in Forests and Global Change 3:54 doi: 10.3389/ffgc.2020.00054
CrossRef Google Scholar
|
Demirer GS, Gibson DJ, Yue X, Pan K, Elishav E, et al. 2023. Phosphate deprivation-induced changes in tomato are mediated by an interaction between brassinosteroid signaling and zinc. New Phytologist 239:1368−83 doi: 10.1111/nph.19007
CrossRef Google Scholar
|
Dey G, Banerjee P, Sharma RK, Maity JP, Etesami H, et al. 2021. Management of Phosphorus in Salinity-Stressed Agriculture for Sustainable Crop Production by Salt-Tolerant Phosphate-Solubilizing Bacteria — A Review. Agronomy 11:1552 doi: 10.3390/agronomy11081552
CrossRef Google Scholar
|
Doebley JF, Gaut BS, Smith BD. 2006. The molecular genetics of crop domestication. Cell 127:1309−21 doi: 10.1016/j.cell.2006.12.006
CrossRef Google Scholar
|
Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10:996−98 doi: 10.1038/nmeth.2604
CrossRef Google Scholar
|
Finkel OM, Salas-González I, Castrillo G, Spaepen S, Law TF, et al. 2019. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology 17:e3000534 doi: 10.1371/journal.pbio.3000534
CrossRef Google Scholar
|
de la Fuente Cantó C, Simonin M, King E, Moulin L, Bennett MJ, et al. 2020. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. The Plant Journal 103:951−64 doi: 10.1111/tpj.14781
CrossRef Google Scholar
|
Hassani MA, Durán P, Hacquard S. 2018. Microbial interactions within the plant holobiont. Microbiome 6:58 doi: 10.1186/s40168-018-0445-0
CrossRef Google Scholar
|
Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, et al. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464−74 doi: 10.1016/j.cell.2016.02.028
CrossRef Google Scholar
|
Isidra-Arellano MC, Delaux PM, Valdés-López O. 2021. The Phosphate Starvation Response System: Its Role in the Regulation of Plant–Microbe Interactions. Plant and Cell Physiology 62:392−400 doi: 10.1093/pcp/pcab016
CrossRef Google Scholar
|
Jia X, Wang L, Zeng H, Yi K. 2021. Insights of intracellular/intercellular phosphate transport and signaling in unicellular green algae and multicellular land plants. New Phytologist 232:1566−71 doi: 10.1111/nph.17716
CrossRef Google Scholar
|
Kalayu G. 2019. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. International Journal of Agronomy 2019:e4917256 doi: 10.1155/2019/4917256
CrossRef Google Scholar
|
Lang M, Bei S, Li X, Kuyper TW, Zhang J. 2019. Rhizoplane Bacteria and Plant Species Co-determine Phosphorus-Mediated Microbial Legacy Effect. Frontiers in Microbiology 10:2856 doi: 10.3389/fmicb.2019.02856
CrossRef Google Scholar
|
Li H, He K, Zhang Z, Hu Y. 2023. Molecular mechanism of phosphorous signaling inducing anthocyanin accumulation in Arabidopsis. Plant Physiology and Biochemistry 196:121−29 doi: 10.1016/j.plaphy.2023.01.029
CrossRef Google Scholar
|
Liang JL, Liu J, Jia P, Yang TT, Zeng QL, et al. 2020. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal 14:1600−13 doi: 10.1038/s41396-020-0632-4
CrossRef Google Scholar
|
Liu J, Abdelfattah A, Norelli J, Burchard E, Schena L, et al. 2018. Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome 6:18 doi: 10.1186/s40168-018-0403-x
CrossRef Google Scholar
|
Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, et al. 2019. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiology 19:201 doi: 10.1186/s12866-019-1572-x
CrossRef Google Scholar
|
López-Arredondo D, Leyva-González M, González-Morales S, López-Bucio J, Herrera-Estrella L. 2014. Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops. Annual review of plant biology 65:95−123 doi: 10.1146/annurev-arplant-050213-035949
CrossRef Google Scholar
|
Lu JL, Jia P, Feng SW, Wang YT, Zheng J, et al. 2022. Remarkable effects of microbial factors on soil phosphorus bioavailability: A country-scale study. Global Change Biology 28:4459−71 doi: 10.1111/gcb.16213
CrossRef Google Scholar
|
Lu YT, Li MY, Cheng KY, Tan CM, Su LW, et al. 2014. Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiology 164:1456−69 doi: 10.1104/pp.113.229740
CrossRef Google Scholar
|
Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957−63 doi: 10.1093/bioinformatics/btr507
CrossRef Google Scholar
|
Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N, Martínez-Romero J, Zuñiga-Dávila D. 2020. Plant microbiota modified by plant domestication. Systematic and Applied Microbiology 43:126106 doi: 10.1016/j.syapm.2020.126106
CrossRef Google Scholar
|
Oberson A, Friesen DK, Rao IM, Bühler S, Frossard E. 2001. Phosphorus Transformations in an Oxisol under contrasting land-use systems: The role of the soil microbial biomass. Plant and Soil 237:197−210 doi: 10.1023/A:1013301716913
CrossRef Google Scholar
|
Olsen S r. , Sommers L e. 1983. Phosphorus. In: Methods of Soil Analysis. John Wiley & Sons, Ltd, 403–430.
Google Scholar
|
Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, et al. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America 110:6548−53 doi: 10.1073/pnas.1302837110
CrossRef Google Scholar
|
Peralta IE, Spooner DM, Knapp S. 2008. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany Monographs 84:1−186
Google Scholar
|
Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, et al. 2019. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7:114 doi: 10.1186/s40168-019-0727-1
CrossRef Google Scholar
|
Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. 2016. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology 90:635−44 doi: 10.1007/s11103-015-0337-7
CrossRef Google Scholar
|
Raaijmakers JM, Kiers ET. 2022. Rewilding plant microbiomes. Science 378:599−600 doi: 10.1126/science.abn6350
CrossRef Google Scholar
|
Ren Y, Yu G, Shi C, Liu L, Guo Q, et al. 2022. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta 1:e12 doi: 10.1002/imt2.12
CrossRef Google Scholar
|
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75:7537−41 doi: 10.1128/AEM.01541-09
CrossRef Google Scholar
|
Seeling B, Zasoski RJ. 1993. Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil. Plant and Soil 148:277−84 doi: 10.1007/BF00012865
CrossRef Google Scholar
|
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology 12:R60 doi: 10.1186/gb-2011-12-6-r60
CrossRef Google Scholar
|
Shi J, Zhao B, Zheng S, Zhang X, Wang X, et al. 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184:5527−5540.E18 doi: 10.1016/j.cell.2021.09.030
CrossRef Google Scholar
|
Smulders L, Benítez E, Moreno B, López-García Á, Pozo MJ, et al. 2021. Tomato Domestication Affects Potential Functional Molecular Pathways of Root-Associated Soil Bacteria. Plants 10:1942 doi: 10.3390/plants10091942
CrossRef Google Scholar
|
Stackebrandt E, Goebel BM. 1994. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal of Systematic and Evolutionary Microbiology 44:846−49 doi: 10.1099/00207713-44-4-846
CrossRef Google Scholar
|
Sugito T, Yoshida K, Takebe M, Shinano T, Toyota K. 2010. Soil microbial biomass phosphorus as an indicator of phosphorus availability in a Gleyic Andosol. Soil Science & Plant Nutrition 56:390−98 doi: 10.1111/j.1747-0765.2010.00483.x
CrossRef Google Scholar
|
Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, et al. 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS ONE 13:e0204408 doi: 10.1371/journal.pone.0204408
CrossRef Google Scholar
|
Sun X, Song B, Xu R, Zhang M, Gao P, et al. 2021. Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. Journal of Environmental Sciences (China) 104:387−98 doi: 10.1016/j.jes.2020.12.019
CrossRef Google Scholar
|
Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 2015. The importance of the microbiome of the plant holobiont. New Phytologist 206:1196−206 doi: 10.1111/nph.13312
CrossRef Google Scholar
|
Wang X, Gao L, Jiao C, Stravoravdis S, Hosmani PS, et al. 2020. Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nature Communications 11:5817 doi: 10.1038/s41467-020-19682-0
CrossRef Google Scholar
|
Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261−67 doi: 10.1128/AEM.00062-07
CrossRef Google Scholar
|
Wang JL, Liu KL, Zhao XQ, Gao GF, Wu YH, et al. 2022. Microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows. The Science of the Total Environment 811:152342 doi: 10.1016/j.scitotenv.2021.152342
CrossRef Google Scholar
|
Xu H, Zhang J, Guo X, Qu B, Liu Y, et al. 2021. Planting, Sample Collection and Library Preparation of 16S rRNA Gene Amplicon Sequencing for Rice Root Microbiomes. Microbiome Protocols eBook Bio-101:e2003697(in Chinese) doi: 10.21769/BioProtoc.2003697
CrossRef Google Scholar
|
Xu L, Zhao H, Wan R, Liu Y, Xu Z, et al. 2019. Identification of vacuolar phosphate efflux transporters in land plants. Nature Plants 5:84−94 doi: 10.1038/s41477-018-0334-3
CrossRef Google Scholar
|
Zhang Y, Wang L, Guo Z, Xu L, Zhao H, et al. 2022. Revealing the underlying molecular basis of phosphorus recycling in the green manure crop Astragalus sinicus. Journal of Cleaner Production 341:130924 doi: 10.1016/j.jclepro.2022.130924
CrossRef Google Scholar
|
Zhou H, Ma A, Zhou X, Chen X, Zhang J, et al. 2022. Phosphorus Shapes Soil Microbial Community Composition and Network Properties During Grassland Expansion Into Shrubs in Tibetan Dry Valleys. Frontiers in Plant Science 13:848691 doi: 10.3389/fpls.2022.848691
CrossRef Google Scholar
|