-
Cucumber (Cucumis sativus L. cv Jinchun No. 4) was used as experimental material. Uniform seeds were sterilized with 10% NaClO for 10 min, followed by washing 5 times with deionized water and soaked in deionized water for 4 h, then the seeds were incubated for germination on moistened filter paper in an incubator (Shanghai Zhicheng Analytical Instrument Manufacturing Co., Ltd., Shanghai, China), which was maintained at 28 °C. The germinated seeds were sown in 32-well plastic trays filled with seedling substrates (Jiangsu Xingnong Substrate Technology Co., Ltd., China) and grown in the greenhouse of Baima Teaching and Research Base of Nanjing Agricultural University. The temperature in the greenhouse during the day was controlled at 25−28 °C, the temperature at night was 18−20°C, and the relative humidity was maintained at 75%−80%. When the fourth leaves were fully expanded, the seedlings were selected and planted in coconut coir substrates (Van der Knaap Group of Companies, Wateringen, Netherlands) on Apr. 17, 2021 in the same greenhouse. As shown in Supplemental Fig. S1, the maximum temperature was over 30 °C in the most of the cultivation period, indicating that cucumber plants suffered from high temperature stress.
Experimental design
-
Cucumber seedlings were randomly divided into 16 groups to treat with or without Put mixture, and each group contained 15 plants as one treatment. As shown in Table 1, cucumber plants without treatment with the mixture of 8 mmol L−1 Put, 50 µmol L−1 MT, 1.5 mmol L−1 Pro, and 0.3 g L−1 MFA (Put mixture, original concentration) were used as CK. S-1, S-2, and S-3 indicated cucumber plants treated with the original, diluted five times, and diluted ten times concentration of Put mixture at seedling stage every 7 d, 3 times, respectively. Fl-1, Fl-2, and Fl-3 indicated cucumber plants treated with the original, diluted five times, and diluted ten times concentration of Put mixture at flowering stage every 7 d, 3 times, respectively. Fl-4, Fl-5, and Fl-6 indicated cucumber plants treated with the original, diluted five times, and diluted ten times concentration of Put mixture at flowering stage every 14 d, 3 times, respectively. Fr-1, Fr-2, and Fr-3 indicated cucumber plants treated with the original, diluted five times, and diluted ten times concentration of Put mixture at fruiting stage every 7 d, 3 times, respectively. Fr-4, Fr-5, and Fr-6 indicated cucumber plants treated with the original, diluted five times, and diluted ten times concentration of Put mixture at fruiting stage every 14 d, 3 times, respectively.
Table 1. Spraying concentration and stage of cucumber with putrescine mixture.
Treatment Putrescine
concentration
(mmol L−1)Potassium fulvic acid concentration
(g L−1)Proline
concentration
(mmol L−1)Melatonin
concentration
(µmol L−1)Spraying interval (d) Spraying stage CK − − − − − S-1 8 0.3 1.5 50 7 Seedling stage S-2 1.6 0.06 0.3 10 7 Seedling stage S-3 0.8 0.03 0.15 5 7 Seedling stage Fl-1 8 0.3 1.5 50 7 Flowering stage Fl-2 1.6 0.06 0.3 10 7 Flowering stage Fl-3 0.8 0.03 0.15 5 7 Flowering stage Fl-4 8 0.3 1.5 50 14 Flowering stage Fl-5 1.6 0.06 0.3 10 14 Flowering stage Fl-6 0.8 0.03 0.15 5 14 Flowering stage Fr-1 8 0.3 1.5 50 7 Fruiting stage Fr-2 1.6 0.06 0.3 10 7 Fruiting stage Fr-3 0.8 0.03 0.15 5 7 Fruiting stage Fr-4 8 0.3 1.5 50 14 Fruiting stage Fr-5 1.6 0.06 0.3 10 14 Fruiting stage Fr-6 0.8 0.03 0.15 5 14 Fruiting stage Measurement of plant growth parameters
-
The plant growth parameters were measured after planting for 40 d. Plant height was measured from the stem base to the growth point with a ruler, and stem diameter was measured with a vernier caliper, 1 cm below the cotyledons. Fresh samples were washed with distilled water and dried with paper, and then fresh weight was weighed with an electronic scale. The samples were dried for 15 min at 105 °C in an oven (Shanghai Yiheng Scientific Instrument Co., Ltd., Shanghai, China), and the temperature was reduced to 75 °C until constant weight was obtained.
Determination of photosynthesis
-
The Pn, Gs, Ci, and Tr of the fifth fully expanded leaf below the growth point were measured with a portable photosynthesis system (LI-6400; Li-COR, Lincoln, NE, USA) from 9:00 to 11:00 am after planting for 40 d. The measurement parameters were as follows: ambient CO2 concentration was 380 µmol mol−1, the leaf chamber temperature was maintained at 25 °C, and the photosynthetic photo flux density was 800 µmol m−2 s−1.
Determination of relative electrolyte leakage and MDA content
-
Relative electrolyte leakage was detected according to the method described previously[52]. The content of MDA was determined using the thiobarbituric acid method[53].
Determination of Pro content
-
Fresh leaves were washed, cut into pieces and 0.2 g samples were placed in a 15-ml centrifuge tube. Five millilitres of 3% sulfosalicylic acid solution was added into the tubes, and extracted in a boiling water bath for 10 min (shaken every 5 min). After cooling, the tubes were centrifuged at 3000 r for 10 min and 1 ml of the supernatant was placed in a new tube, adding 1 ml of distilled water, 1 ml of glacial acetic acid, and 2 ml of acidic ninhydrin solution. Subsequently, the tubes were heated in a boiling water bath for 60 min. Four millilitres of toluene was added to the tube after cooling, and vortexed for 30 s. The upper layer of toluene Pro red solution was used to measure Pro concentration at 520 nm using a UV-1800 spectrophotometer (Shanghai Unico Instrument Co., Ltd., Shanghai, China) as previously described[54].
Measurement of H2O2 and chlorophyll content
-
Cucumber leaves (0.2 g) were ground to homogenate in 1.6 ml of 0.1% TCA on ice and centrifuged at 12000 r for 20 min. The supernatant (0.2 ml) was added to 1 ml of 1 mol L−1 KI and 0.25 ml of 0.1 mol L−1 potassium phosphate buffer (pH = 7.8) for reaction for 1 h in the dark. The concentration of H2O2 was measured at 390 nm using a spectrophotometer and calculated as previously described[55].
For the measurement of chlorophyll content, 20 ml of 95% ethanol was added to 0.2 g of fresh leaves and sealed. The tubes were placed in the dark for 24−36 h until the leaves turn white. The chlorophyll content was measured according to the method of Arnon[56].
Fruit yield and quality measurements
-
Ten plants were labeled in each treatment for yield measurement. Fruit weight was measured each time after picking, and the yield per plant was calculated after harvest. Six fresh ripe cucumbers were collected from each treatment during the fruit stage, and the fruit soluble solids, tannins, organic acid, and vitamin C content were determined to evaluate the fruit quality.
The content of soluble solids was detected as previously described[57]. Briefly, the content of soluble solids was determined using an Abbe refractometer (WZ-108, Beijing Wancheng Beizeng Precision Instrument Co., Ltd., Beijing, China). Before determination, the refractometer was calibrated with a standard sample and then the content of soluble solids was analyzed and determined.
For measuring tannin content, cucumber fruit (5 g) was ground and transferred to a 150-ml conical flask, shaken and extracted for 15 min. Five millilitres of 1 mol L−1 zinc acetate standard solution and 3.5 ml of concentrated ammonia were added into a 100-ml volumetric flask, shaken, and the tannin extraction was slowly transferred into the volumetric flask, keeping it warm in a 35 °C water bath for 30 min with shaking. After cooling, the volume was adjusted to 100 ml with distilled water, fully mixed and filtered. Ten millilitres of filtrate was placed in a 150-ml conical flask, and 40 ml of distilled water, 12.5 ml of NH3-NH4Cl, and 10 drops of chrome black T indicator were added and mixed well. The mixture was titrated with 0.05 mol L−1 EDTA solution until the wine red changed to pure blue. The content of tannin was calculated as previously described[58].
To measure the content of organic acid, cucumber fruits (5 g) were ground and washed into a 250-ml conical flask with distilled water to make the volume to 100 ml. Organic acids were extracted in a constant temperature water bath at 80 °C for 30 min and shaken continuously. After cooling, the extractions were filtered and the residues were washed with distilled water 3 times; the filtrate was mixed and fixed to 100 ml with distilled water. The organic acid content was titrated with 0.1 mol L−1 sodium hydroxide standard solution as previously described[59].
The content of vitamin C was determined according to the method previously described[60].
Statistical analysis
-
All data were statistically analyzed using the SPSS 18.0 version (SPSS Inc., Chicago, IL, USA), and the results are presented as means ± SDs (n = 3). Analysis of variance (ANOVA) was used to test for significance, and the significance between treatments were analyzed with Tukey’s honestly significant difference test (HSD) at P < 0.05.
-
About this article
Cite this article
Wang Y, Liu H, Lin W, Jahan MS, Wang J, et al. 2022. Foliar application of a mixture of putrescine, melatonin, proline, and potassium fulvic acid alleviates high temperature stress of cucumber plants grown in the greenhouse. Technology in Horticulture 2:6 doi: 10.48130/TIH-2022-0006
Foliar application of a mixture of putrescine, melatonin, proline, and potassium fulvic acid alleviates high temperature stress of cucumber plants grown in the greenhouse
- Received: 24 January 2022
- Accepted: 18 July 2022
- Published online: 29 September 2022
Abstract: Putrescine (Put), melatonin (MT), proline (Pro), and potassium fulvic acid (MFA) are widely used as plant growth regulators to enhance stress tolerance. However, the roles of their mixtures in response to stress are largely unknown. Here, we mixed Put with MT, Pro, and MFA (hereafter referred to as Put mixture) with different concentrations and foliar sprayed at different growth stages (seedling, flowering, and fruiting stage) of cucumber (Cucumis sativus L.) to investigate their roles on plant growth, fruit yield, and quality under high temperature stress. The foliar application of the Put mixture promoted cucumber growth, increased chlorophyll and Pro contents and net photosynthesis rate, and reduced the values of relative electrolyte leakage, H2O2 and malondialdehyde contents of cucumber leaves, indicating that treatment with Put mixture reduced the oxidative stress caused by high temperature. Furthermore, Put mixture-treated cucumber plants had lower fruit deformity rate and higher fruit yield compared with control. The contents of vitamin C and soluble solids of cucumber fruit significantly increased and the contents of tannin and organic acid decreased. The most profound effects were found in the plants treated with 8 mmol L−1 Put, 50 µmol L−1 MT, 1.5 mmol L−1 Pro and 0.3 g L−1 MFA every 7 d, three times at the seedling stage, indicating that cucumber seedlings treated with the mixture of Put, MT, Pro, and MFA significantly alleviated the negative effects of high temperature stress.
-
Key words:
- putrescine /
- melatonin /
- proline /
- potassium fulvic acid /
- cucumber /
- high temperature