[1]
|
Draper FC, Baker TR, Baraloto C, Chave J, Costa F, et al. 2020. Quantifying tropical plant diversity requires an integrated technological approach. Trends in Ecology & Evolution 35:1100−9 doi: 10.1016/j.tree.2020.08.003
CrossRef Google Scholar
|
[2]
|
Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, et al. 2019. New horizons in culture and valorization of red microalgae. Biotechnology Advances 37:193−222 doi: 10.1016/j.biotechadv.2018.11.014
CrossRef Google Scholar
|
[3]
|
Brodie J, Chan CX, de Clerck O, Cock JM, Coelho SM, et al. 2017. The algal revolution. Trends in Plant Science 22:726−38 doi: 10.1016/j.tplants.2017.05.005
CrossRef Google Scholar
|
[4]
|
Lu Y, Xu J. 2015. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends in Plant Science 20:273−82 doi: 10.1016/j.tplants.2015.01.006
CrossRef Google Scholar
|
[5]
|
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, et al. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. Journal of Eukaryotic Microbiology 66:4−119 doi: 10.1111/jeu.12691
CrossRef Google Scholar
|
[6]
|
Chen C, Tang T, Shi Q, Zhou Z, Fan J. 2022. The potential and challenge of microalgae as promising future food sources. Trends in Food Science & Technology 126:99−112 doi: 10.1016/j.jpgs.2022.06.016
CrossRef Google Scholar
|
[7]
|
Thorhaug A, Gallagher JB, Kiswara W, Prathep A, Huang X, et al. 2020. Coastal and estuarine blue carbon stocks in the greater Southeast Asia region: Seagrasses and mangroves per nation and sum of total. Marine Pollution Bulletin 160:111168 doi: 10.1016/j.marpolbul.2020.111168
CrossRef Google Scholar
|
[8]
|
Harborne AR, Mumby PJ, Micheli F, Perry CT, Dahlgren CP, et al. 2006. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes. Advances in Marine Biology 50:57−189 doi: 10.1016/S0065-2881(05)50002-6
CrossRef Google Scholar
|
[9]
|
Tiku AR. 2019. Antimicrobial compounds (phytoanticipins and phytoalexins) and their role in plant defense. Co-Evolution of Secondary Metabolites, ed. Merillon JM, Ramawat K. Cham, Switzerland: Springer. pp. 845–68. https://doi.org/10.1007/978-3-319-96397-6_63
|
[10]
|
Gokce G, Haznedaroglu MZ. 2008. Evaluation of antidiabetic, antioxidant and vasoprotective effects of Posidonia oceanica extract. Journal of Ethnopharmacology 115:122−30 doi: 10.1016/j.jep.2007.09.016
CrossRef Google Scholar
|
[11]
|
Lee HJ, Kim YA, Lee JI, Lee BJ, Seo YW. 2007. Screening of Korean marine plants extracts for inhibitory activity on protein tyrosine phosphatase 1B. Journal of Applied Biological Chemistry 50:74−77
Google Scholar
|
[12]
|
Kimura Y, Watanabe K, Okuda H. 1996. Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. Journal of Ethnopharmacology 54:47−54 doi: 10.1016/0378-8741(96)01449-3
CrossRef Google Scholar
|
[13]
|
Young RM, Schoenrock KM, von Salm JL, Amsler CD, Baker BJ. 2015. Structure and function of macroalgal natural products. In Natural Products from Marine Algae: Methods and Protocols, ed. Stengel BD, Connan S. Humana Press, Springer: New York, NY, USA. pp. 39−73. https://doi.org/10.1007/978-1-4939-2684-8_2
|
[14]
|
Lu Y, Zhou W, Wei L, Li J, Jia J, et al. 2014. Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica. Biotechnology for Biofuels 7:81 doi: 10.1186/1754-6834-7-81
CrossRef Google Scholar
|
[15]
|
Cui Y, Zhao J, Wang Y, Qin S, and Lu Y. 2018. Characterization and engineering of a dual-function diacylglycerol acyltransferase in the oleaginous marine diatom Phaeodactylum tricornutum. Biotechnology for Biofuels 11:32 doi: 10.1186/s13068-018-1029-8
CrossRef Google Scholar
|
[16]
|
Zhou W, Zhang X, Wang A, Yang L, Gan Q, et al. 2022. Widespread sterol methyltransferase participates in the biosynthesis of both C4α- and C4β-methyl sterols. Journal of the American Chemical Society 144:9023−32 doi: 10.1021/jacs.2c01401
CrossRef Google Scholar
|
[17]
|
Lu Y, Jiang J, Zhao H, Han X, Xiang Y, et al. 2020. Clade-specific sterol metabolites in dinoflagellate endosymbionts are associated with coral bleaching in response to environmental cues. mSystems 5:e00765−20 doi: 10.1128/mSystems.00765-20
CrossRef Google Scholar
|
[18]
|
Davinelli S, Nielsen ME, Scapagnini G. 2018. Astaxanthin in skin health, repair, and disease: a comprehensive review. Nutrients 10:522 doi: 10.3390/nu10040522
CrossRef Google Scholar
|
[19]
|
Kim SK. Microalgae as sources of biomaterials and pharmaceuticals. Marine Pharmacognosy, ed. Martin DF, Padilla GM. 2012, London: Elsevier. 161−72.
|
[20]
|
Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, et al. 2013. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators of Inflammation 2013:782137 doi: 10.1155/2013/782137
CrossRef Google Scholar
|
[21]
|
Sánchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, et al. 2008. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Applied Microbiology and Biotechnology 79:719−29 doi: 10.1007/s00253-008-1494-2
CrossRef Google Scholar
|
[22]
|
Del Campo JA, Rodríguez H, Moreno J, Vargas MA, Rivas J, et al. 2001. Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. Journal of Biotechnology 85:289−95 doi: 10.1016/s0168-1656(00)00380-1
CrossRef Google Scholar
|
[23]
|
Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, et al. 2011. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs 9:1607−24 doi: 10.3390/md9091607
CrossRef Google Scholar
|
[24]
|
Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN. 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. Journal of Applied Phycology 20:245−51 doi: 10.1007/s10811-007-9233-0
CrossRef Google Scholar
|
[25]
|
Wang X and Zhang X. 2013. Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnology Progress 29:681−87 doi: 10.1002/btpr.1725
CrossRef Google Scholar
|
[26]
|
El-Baky A, Hanaa H, Baz E, Farouk K, El-Baroty, et al. 2009. Production of phenolic compounds from Spirulina maxima microalgae and its protective effects in vitro toward hepatotoxicity model. Electronic Journal of Environmental, Agricultural & Food Chemistry 3:133−39
Google Scholar
|
[27]
|
Su G, Jiao K, Chang J, Li Z, Guo X, et al. 2016. Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresources and Bioprocessing 3:33−41 doi: 10.1186/s40643-016-0110-z
CrossRef Google Scholar
|
[28]
|
Giménez A, González M, Medina AR, Grima EM, Cerdán S. 1998. Downstream processing and purification of eicosapentaenoic (20:5n-3) and arachidonic acids (20:4n-6) from the microalga Porphyridium cruentum. Bioseparation 7:89−99 doi: 10.1023/A:1008021330785
CrossRef Google Scholar
|
[29]
|
Huheihel M, Ishanu V, Tal J, Arad SM. 2002. Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. Journal of Biochemical and Biophysical Methods 50:189−200 doi: 10.1016/s0165-022x(01)00186-5
CrossRef Google Scholar
|
[30]
|
Ma XN, Chen TP, Yang B, Liu J, Chen F. 2016. Lipid Production from Nannochloropsis. Marine Drugs 14:61 doi: 10.3390/md14040061
CrossRef Google Scholar
|
[31]
|
Samarakoon KW, O-Nam K, Ko JY, Lee JH, Kang MC, et al. 2013. Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate. Journal of Applied Phycology 25:1595−606 doi: 10.1007/s10811-013-9994-6
CrossRef Google Scholar
|
[32]
|
Cha TS, Chen CF, Yee W, Aziz A, Loh SH. 2011. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. Journal of Microbiological Methods 84:430−34 doi: 10.1016/j.mimet.2011.01.005
CrossRef Google Scholar
|
[33]
|
Gu W, Kavanagh JM, McClure DD. 2021. Photoautotrophic production of eicosapentaenoic acid. Critical Reviews in Biotechnology 41:731−48 doi: 10.1080/07388551.2021.1888065
CrossRef Google Scholar
|
[34]
|
Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM. 2003. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytotherapy Research 17:665−70 doi: 10.1002/ptr.1227
CrossRef Google Scholar
|
[35]
|
Song P, Kuryatov A, Axelsen PH. 2020. Biosynthesis of uniformly carbon isotope-labeled docosahexaenoic acid in Crypthecodinium cohnii. AMB Express 10:45 doi: 10.1186/s13568-020-00981-0
CrossRef Google Scholar
|
[36]
|
Chi G, Xu Y, Cao X, Li Z, Cao M, et al. 2022. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnology Advances 55:107897 doi: 10.1016/j.biotechadv.2021.107897
CrossRef Google Scholar
|
[37]
|
Chang KJL, Dunstan GA, Abell GCJ, Clementson LA, Blackburn SI, et al. 2012. Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Applied Microbiology and Biotechnology 93:2215−31 doi: 10.1007/s00253-011-3856-4
CrossRef Google Scholar
|
[38]
|
Braune S, Krüger-Genge A, Kammerer S, Jung F, Küpper JH. 2021. Phycocyanin from Arthrospira platensis as potential anti-cancer drug: review of in vitro and in vivo studies. Life 11:91 doi: 10.3390/life11020091
CrossRef Google Scholar
|
[39]
|
Sánchez-Machado DI, López-Hernández J, Paseiro-Losada P, López-Cervantes J. 2004. An HPLC method for the quantification of sterols in edible seaweeds. Biomedical Chromatography 18:183−90 doi: 10.1002/bmc.316
CrossRef Google Scholar
|
[40]
|
Moghaddam MF, Gerwick WH, Ballantine DL. 1989. Discovery of 12-(S)-hydroxy-5, 8, 10, 14-icosatetraenoic acid [12-(S)-HETE] in the tropical red alga Platysiphonia miniata. Prostaglandins 37:303−8 doi: 10.1016/0090-6980(89)90065-8
CrossRef Google Scholar
|
[41]
|
Namvar F, Mohamed S, Fard SG, Behravan J, Mustapha NM, et al. 2012. Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chemistry 130:376−82 doi: 10.1016/j.foodchem.2011.07.054
CrossRef Google Scholar
|
[42]
|
Mendes Marques ML, Presa FB, Viana RLS, Costa MSSP, Amorim MOR, et al. 2018. Anti-thrombin, anti-adhesive, anti-migratory, and anti-proliferative activities of sulfated galactans from the tropical green seaweed, Udotea flabellum. Marine Drugs 17:5 doi: 10.3390/md17010005
CrossRef Google Scholar
|
[43]
|
Wang L, Wang X, Wu H, Liu R. 2014. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Marine Drugs 12:4984−5020 doi: 10.3390/md12094984
CrossRef Google Scholar
|
[44]
|
Harnedy PA, FitzGerald RJ. 2011. Bioactive Proteins, Peptides, and Amino Acids from Macroalgae. Journal of Phycology 47:218−32 doi: 10.1111/j.1529-8817.2011.00969.x
CrossRef Google Scholar
|
[45]
|
Ahn MJ, Yoon KD, Min SY, Lee JS, Kim JH, et al. 2004. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biological & Pharmaceutical Bulletin 27:544−47 doi: 10.1248/bpb.27.544
CrossRef Google Scholar
|
[46]
|
Premarathna AD, Tuvikene R, Fernando PHP, Adhikari R, Perera MCN, et al. 2022. Comparative analysis of proximate compositions, mineral and functional chemical groups of 15 different seaweed species. Scientific Reports 12:19610 doi: 10.1038/s41598-022-23609-8
CrossRef Google Scholar
|
[47]
|
Artan M, Li Y, Karadeniz F, Lee SH, Kim MM, et al. 2008. Anti-HIV-1 activity of phloroglucinol derivative, 6,6'-bieckol, from Ecklonia cava. Bioorganic & Medicinal Chemistry 16:7921−6 doi: 10.1016/j.bmc.2008.07.078
CrossRef Google Scholar
|
[48]
|
Charoensiddhi S, Conlon MA, Vuaran MS, Franco CMM, Zhang W. 2017. Polysaccharide and phlorotannin-enriched extracts of the brown seaweed Ecklonia radiata influence human gut microbiota and fermentation in vitro. Journal of Applied Phycology 29:2407−16 doi: 10.1007/s10811-017-1146-y
CrossRef Google Scholar
|
[49]
|
Dinesh S, Menon T, Hanna LE, Suresh V, Sathuvan M, et al. 2016. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. International Journal of Biological Macromolecules 82:83−88 doi: 10.1016/j.ijbiomac.2015.09.078
CrossRef Google Scholar
|
[50]
|
García-Ríos V, Ríos-Leal E, Robledo D, Freile-Pelegrin Y. 2012. Polysaccharides composition from tropical brown seaweeds. Phycological Research 60:305−15 doi: 10.1111/j.1440-1835.2012.00661.x
CrossRef Google Scholar
|
[51]
|
Rabanal M, Ponce NMA, Navarro DA, Gómez RM, Stortz CA. 2014. The system of fucoidans from the brown seaweed Dictyota dichotoma: chemical analysis and antiviral activity. Carbohydrate Polymers 101:804−11 doi: 10.1016/j.carbpol.2013.10.019
CrossRef Google Scholar
|
[52]
|
Dutot M, Fagon R, Hemon M, Rat P. 2012. Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum. Applied Biochemistry and Biotechnology 167:2234−40 doi: 10.1007/s12010-012-9761-1
CrossRef Google Scholar
|
[53]
|
Gosch BJ, Magnusson M, Paul NA, de Nys R. 2012. Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. Global Change Biology Bioenergy 4:1−12 doi: 10.1111/j.1757-1707.2012.01175.x
CrossRef Google Scholar
|
[54]
|
Graiff A, Ruth W, Kragl U, Karsten U. 2016. Chemical characterization and quantification of the brown algal storage compound laminarin — A new methodological approach. Journal of Applied Phycology 28:533−43 doi: 10.1007/s10811-015-0563-z
CrossRef Google Scholar
|
[55]
|
Moroney NC, O'Grady MN, O'Doherty JV, Kerry JP. 2013. Effect of a brown seaweed (Laminaria digitata) extract containing laminarin and fucoidan on the quality and shelf-life of fresh and cooked minced pork patties. Meat Science 94:304−11 doi: 10.1016/j.meatsci.2013.02.010
CrossRef Google Scholar
|
[56]
|
Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, et al. 2014. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. The Scientific World Journal 2014:768323 doi: 10.1155/2014/768323
CrossRef Google Scholar
|
[57]
|
Kim JM, Araki S, Kim DJ, Park CB, Takasuka N, et al. 1998. Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis 19:81−85 doi: 10.1093/carcin/19.1.81
CrossRef Google Scholar
|
[58]
|
Kanchanapoom T, Kasai R, Picheansoonthon C, Yamasaki K. 2001. Megastigmane, aliphatic alcohol and benzoxazinoid glycosides from Acanthus ebracteatus. Phytochemistry 58:811−17 doi: 10.1016/S0031-9422(01)00306-5
CrossRef Google Scholar
|
[59]
|
Hokputsa S, Harding SE, Inngjerdingen K, Jumel K, Michaelsen TE, et al. 2004. Bioactive polysaccharides from the stems of the Thai medicinal plant Acanthus ebracteatus: their chemical and physical features. Carbohydrate Research 339:753−62 doi: 10.1016/j.carres.2003.11.022
CrossRef Google Scholar
|
[60]
|
Wu J, Zhang S, Xiao Q, Li Q, Huang J, et al. 2003. Phenylethanoid and aliphatic alcohol glycosides from Acanthus ilicifolius. Phytochemistry 63:491−95 doi: 10.1016/S0031-9422(03)00100-6
CrossRef Google Scholar
|
[61]
|
Kapil A, Sharma S, and Wahidulla S. 1994. Leishmanicidal activity of 2-benzoxazolinone from Acanthus illicifolius in vitro. Planta Medica 60:187−8 doi: 10.1055/s-2006-959449
CrossRef Google Scholar
|
[62]
|
Kanchanapoom T, Kamel MS, Kasai R, Yamasaki K, Picheansoonthon C, et al. 2001. Lignan glucosides from Acanthus ilicifolius. Phytochemistry 56:369−72 doi: 10.1016/S0031-9422(00)00362-9
CrossRef Google Scholar
|
[63]
|
Wu J, Huang J, Xiao Q, Zhang S, Xiao Z, et al. 2004. Complete assignments of 1H and 13C NMR data for 10 phenylethanoid glycosides. Magnetic Resonance in Chemistry 42:659−62 doi: 10.1002/mrc.1393
CrossRef Google Scholar
|
[64]
|
Huo C, An D, Wang B, Zhao Y, Lin W. 2005. Structure elucidation and complete NMR spectral assignments of a new benzoxazolinone glucoside from Acanthus ilicifolius. Magnetic Resonance in Chemistry 43:343−5 doi: 10.1002/mrc.1529
CrossRef Google Scholar
|
[65]
|
Bravo HR, Copaja SV, Argandoña VH. 2004. Chemical basis for the antifeedant activity of natural hydroxamic acids and related compounds. Journal of Agricultural and Food Chemistry 52:2598−601 doi: 10.1021/jf030766t
CrossRef Google Scholar
|
[66]
|
Wiriyachitra P, Hajiwangoh H, Boonton P, Adolf W, Opferkuch HJ, et al. 1985. Investigations of medicinal plants of euphorbiaceae and thymelaeaceae occurring and used in Thailand; II. Cryptic irritants of the diterpene ester type from three Excoecaria species. Planta Medica 51:368−71 doi: 10.1055/s-2007-969522
CrossRef Google Scholar
|
[67]
|
Konishi T, Yamazoe K, Kanzato M, Konoshima T, Fujiwara Y. 2003. Three diterpenoids (excoecarins V1−V3) and a flavanone glycoside from the fresh stem of Excoecaria agallocha. Chemical & Pharmaceutical Bulletin 51:1142−46 doi: 10.1248/cpb.51.1142
CrossRef Google Scholar
|
[68]
|
Karalai C, Wiriyachitra P, Opferkuch HJ, Hecker E. 1994. Cryptic and free skin irritants of the daphnane and tigliane types in latex of Excoecaria agallocha. Planta Medica 60:351−55 doi: 10.1055/s-2006-959499
CrossRef Google Scholar
|
[69]
|
Konishi T, Konoshima T, Fujiwara Y, Kiyosawa S. 2000. Excoecarins D, E, and K, from Excoecaria agallocha. Journal of Natural Products 63:344−46 doi: 10.1021/np990366t
CrossRef Google Scholar
|
[70]
|
Erickson KL, Beutler JA, Cardellina JH Jr, McMahon JB, Newman DJ, et al. 1995. A novel phorbol ester from Excoecaria agallocha. Journal of Natural Products 58:769−72 doi: 10.1021/np50119a020
CrossRef Google Scholar
|
[71]
|
Wang JD, Zhang W, Li ZY, Xiang WS, Guo YW, et al. 2007. Elucidation of excogallochaols A-D, four unusual diterpenoids from the Chinese mangrove Excoecaria agallocha. Phytochemistry 68:2426−31 doi: 10.1016/j.phytochem.2007.05.015
CrossRef Google Scholar
|
[72]
|
Zou JH, Dai J, Chen X, Yuan JQ. 2006. Pentacyclic triterpenoids from leaves of Excoecaria agallocha. Chemical & Pharmaceutical Bulletin 54:920−21 doi: 10.1248/cpb.54.920
CrossRef Google Scholar
|
[73]
|
Bai M, Zheng CJ, and Chen GY. 2021. Austins-type meroterpenoids from a mangrove-derived Penicillium sp. Journal of Natural Products 84:2104−10 doi: 10.1021/acs.jnatprod.1c00050
CrossRef Google Scholar
|
[74]
|
Masuda T, Iritani K, Yonemori S, Oyama Y, Takeda Y. 2001. Isolation and antioxidant activity of galloyl flavonol glycosides from the seashore plant, Pemphis acidula. Bioscience, Biotechnology, and Biochemistry 65:1302−9 doi: 10.1271/bbb.65.1302
CrossRef Google Scholar
|
[75]
|
Miles DH, Ly AM, Chittawong V, de la Cruz AA, and Gomez ED. 1989. Toxicants from mangrove plants, VI. Heritonin, a new piscicide from the mangrove plant Heritiera littoralis. Journal of Natural Products 52:896−98 doi: 10.1021/np50064a045
CrossRef Google Scholar
|
[76]
|
Krishna Kumari GN, Balachandran J, Aravind S, Ganesh MR. 2003. Antifeedant and growth inhibitory effects of some neo-clerodane diterpenoids isolated from Clerodendron species (Verbenaceae) on Earias vitella and Spodoptera litura. Journal of Agricultural and Food Chemistry 51:1555−59 doi: 10.1021/jf025920a
CrossRef Google Scholar
|
[77]
|
Bruno M, Piozzi F, Rosselli S. 2002. Natural and hemisynthetic neoclerodane diterpenoids from Scutellaria and their antifeedant activity. Natural Product Reports 19:357−78 doi: 10.1039/b111150g
CrossRef Google Scholar
|
[78]
|
Kremb S, Helfer M, Kraus B, Wolff H, Wild C, et al. 2014. Aqueous extracts of the marine brown alga Lobophora variegata inhibit HIV-1 infection at the level of virus entry into cells. PLoS One 9:e103895 doi: 10.1371/journal.pone.0103895
CrossRef Google Scholar
|
[79]
|
Mori T, O'Keefe BR, Sowder RC, 2nd, Bringans S, Gardella R, et al. 2005. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. The Journal of Biological Chemistry 280:9345−53 doi: 10.1074/jbc.M411122200
CrossRef Google Scholar
|
[80]
|
Salvador-Neto O, Gomes SA, Soares AR, Machado FL, Samuels RI, et al. 2016. Larvicidal potential of the halogenated sesquiterpene (+)-obtusol, isolated from the alga Laurencia dendroidea J. Agardh (Ceramiales:Rhodomelaceae), against the Dengue vector mosquito Aedes aegypti (Linnaeus) (Diptera:Culicidae). Marine Drugs 14:20 doi: 10.3390/md14020020
CrossRef Google Scholar
|
[81]
|
Oguri Y, Watanabe M, Ishikawa T, Kamada T, Vairappan CS, et al. 2017. New marine antifouling compounds from the red alga Laurencia sp. Marine Drugs 15:267 doi: 10.3390/md15090267
CrossRef Google Scholar
|
[82]
|
Mohammed KA, Hossain CF, Zhang L, Bruick RK, Zhou YD, et al. 2004. Laurenditerpenol, a new diterpene from the tropical marine alga Laurencia intricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. Journal of Natural Products 67:2002−7 doi: 10.1021/np049753f
CrossRef Google Scholar
|
[83]
|
Gomes DL, Telles CBS, Costa MS, Almeida-Lima J, Costa LS, et al. 2015. Methanolic extracts from brown seaweeds Dictyota cilliolata and Dictyota menstrualis induce apoptosis in human cervical adenocarcinoma HeLa cells. Molecules 20:6573−91 doi: 10.3390/molecules20046573
CrossRef Google Scholar
|
[84]
|
Sabry OMM, Andrews S, McPhail KL, Goeger DE, Yokochi A, et al. 2005. Neurotoxic meroditerpenoids from the tropical marine brown alga Stypopodium flabelliforme. Journal of Natural Products 68:1022−30 doi: 10.1021/np050051f
CrossRef Google Scholar
|
[85]
|
Dorta E, Cueto M, Brito I, Darias J. 2002. New terpenoids from the brown alga Stypopodium zonale. Journal of Natural Products 65:1727−30 doi: 10.1021/np020090g
CrossRef Google Scholar
|
[86]
|
Chen JL, Gerwick WH, Schatzman R, Laney M. 1994. Isorawsonol and related IMP dehydrogenase inhibitors from the tropical green alga Avrainvillea rawsonii. Journal of Natural Products 57:947−52 doi: 10.1021/np50109a011
CrossRef Google Scholar
|
[87]
|
Raposo MF, de Morais RM, Bernardo de Morais AM. 2013. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs 11:233−52 doi: 10.3390/md11010233
CrossRef Google Scholar
|
[88]
|
Guiry MD. 2012. How many species of algae are there? Journal of Phycology 48:1057−63 doi: 10.1111/j.1529-8817.2012.01222.x
CrossRef Google Scholar
|
[89]
|
Kusaikin MI, Ermakova SP, Shevchenko NM, Isakov VV, Gorshkov AG, et al. 2010. Structural characteristics and antitumor activity of a new chrysolaminaran from the diatom alga Synedra acus. Chemistry of Natural Compounds 46:1−4 doi: 10.1007/s10600-010-9510-z
CrossRef Google Scholar
|
[90]
|
Bialas F, Reichinger D, Becker CFW. 2021. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme and Microbial Technology 150:109864 doi: 10.1016/j.enzmictec.2021.109864
CrossRef Google Scholar
|
[91]
|
Jackson E, Ferrari M, Cuestas-Ayllon C, Fernández-Pacheco R, Perez-Carvajal J, et al. 2015. Protein-templated biomimetic silica nanoparticles. Langmuir 31:3687−95 doi: 10.1021/la504978r
CrossRef Google Scholar
|
[92]
|
Onesto V, Villani M, Coluccio ML, Majewska R, Alabastri A, et al. 2018. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications. Nanoscale Research Letters 13:94 doi: 10.1186/s11671-018-2507-4
CrossRef Google Scholar
|
[93]
|
Seth K, Kumar A, Rastogi RP, Meena M, Vinayak V, et al. 2021. Bioprospecting of fucoxanthin from diatoms — Challenges and perspectives. Algal Research 60:102475 doi: 10.1016/j.algal.2021.102475
CrossRef Google Scholar
|
[94]
|
Stahl W, Sies H. 2005. Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta 1740:101−7 doi: 10.1016/j.bbadis.2004.12.006
CrossRef Google Scholar
|
[95]
|
Palozza P, Krinsky NI. 1992. beta-Carotene and alpha-tocopherol are synergistic antioxidants. Archives of Biochemistry and Biophysics 297:184−87 doi: 10.1016/0003-9861(92)90658-J
CrossRef Google Scholar
|
[96]
|
Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, et al. 1996. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. Journal of the National Cancer Institute 88:1550−59 doi: 10.1093/jnci/88.21.1550
CrossRef Google Scholar
|
[97]
|
Krinsky NI, Landrum JT, Bone RA. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annual Review of Nutrition 23:171−201 doi: 10.1146/annurev.nutr.23.011702.073307
CrossRef Google Scholar
|
[98]
|
Pasquet V, Morisset P, Ihammouine S, Chepied A, Aumailley L, et al. 2011. Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Marine Drugs 9:819−31 doi: 10.3390/md9050819
CrossRef Google Scholar
|
[99]
|
Saoud HAA, Sprynskyy M, Pashaei R, Kawalec M, Pomastowski P, et al. 2022. Diatom biosilica: Source, physical-chemical characterization, modification, and application. Journal of Separation Science 45:3362−76 doi: 10.1002/jssc.202100981
CrossRef Google Scholar
|
[100]
|
Rein KS, Borrone J. 1999. Polyketides from dinoflagellates: origins, pharmacology and biosynthesis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 124:117−31 doi: 10.1016/s0305-0491(99)00107-8
CrossRef Google Scholar
|
[101]
|
Wang DZ. 2008. Neurotoxins from marine dinoflagellates: a brief review. Marine Drugs 6:349−71 doi: 10.3390/md6020349
CrossRef Google Scholar
|
[102]
|
Qiu S, Yuan Y, Li X, Zhao C, He Y, et al. 2023. Peridinin-chlorophyll-protein complex industry from algae: A critical review of the current advancements, hurdles, and biotechnological potential. Algal Research 72:103118 doi: 10.1016/j.algal.2023.103118
CrossRef Google Scholar
|
[103]
|
Camacho FG, Rodríguez JG, Mirón AS, García MCC, Belarbi EH, et al. 2007. Biotechnological significance of toxic marine dinoflagellates. Biotechnology Advances 25:176−94 doi: 10.1016/j.biotechadv.2006.11.008
CrossRef Google Scholar
|
[104]
|
Sato K, Kaneko K, Kamekawa T, Taba K, Ishigami S, et al. 2021. Two new halogenated compounds from the marine red alga Laurencia nipponica Yamada from the Kunashiri and Etorofu Islands. Chemistry & Biodiversity 18:e2100397 doi: 10.1002/cbdv.202100397
CrossRef Google Scholar
|
[105]
|
Kamada T, Vairappan CS. 2012. A new bromoallene-producing chemical type of the red alga Laurencia nangii masuda. Molecules 17:2119−25 doi: 10.3390/molecules17022119
CrossRef Google Scholar
|
[106]
|
Kamada T, Phan CS, Vairappan CS. 2019. Nangallenes A and B, halogenated nonterpenoid C15-acetogenins from the Bornean red alga Laurencia nangii. Journal of Asian Natural Products Research 21:241−47 doi: 10.1080/10286020.2017.1417265
CrossRef Google Scholar
|
[107]
|
Phan CS, Kamada T, Vairappan CS. 2020. Two new epimers of C15-acetogenin, 4-epi-isolaurallene and 4-epi-itomanallene A as diastereomeric model. Natural Product Research 34:1008−13 doi: 10.1080/14786419.2018.1543681
CrossRef Google Scholar
|
[108]
|
Kamada T, Vairappan CS. 2017. Non-halogenated new sesquiterpenes from Bornean Laurencia snackeyi. Natural Product Research 31:333−40 doi: 10.1080/14786419.2016.1241996
CrossRef Google Scholar
|
[109]
|
Ji L, Qiu S, Wang Z, Zhao C, Tang B, et al. 2023. Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International 167:112737 doi: 10.1016/j.foodres.2023.112737
CrossRef Google Scholar
|
[110]
|
Wang N, Dai L, Chen Z, Li T, Wu J, et al. 2022. Extraction optimization, physicochemical characterization, and antioxidant activity of polysaccharides from Rhodosorus sp. SCSIO-45730. Journal of Applied Phycology 34:285−99 doi: 10.1007/s10811-021-02646-2
CrossRef Google Scholar
|
[111]
|
König GM, Wright AD, Linden A. 1999. Plocamium hamatum and its monoterpenes: chemical and biological investigations of the tropical marine red alga. Phytochemistry 52:1047−53 doi: 10.1016/S0031-9422(99)00284-8
CrossRef Google Scholar
|
[112]
|
Hung LD, Trinh PTH. 2021. Structure and anticancer activity of a new lectin from the cultivated red alga, Kappaphycus striatus. Journal of Natural Medicines 75:223−31 doi: 10.1007/s11418-020-01455-0
CrossRef Google Scholar
|
[113]
|
Yoo HD, Ketchum SO, France D, Bair K, Gerwick WH. 2002. Vidalenolone, a novel phenolic metabolite from the tropical red alga Vidalia sp. Journal of Natural Products 65:51−53 doi: 10.1021/np010319c
CrossRef Google Scholar
|
[114]
|
Li J, Cai C, Yang C, Li J, Sun T, et al. 2019. Recent advances in pharmaceutical potential of brown algal polysaccharides and their derivatives. Current Pharmaceutical Design 25:1290−311 doi: 10.2174/1381612825666190618143952
CrossRef Google Scholar
|
[115]
|
Chung HY, Ma WCJ, Ang PO Jr, Kim JS, Chen F. 2003. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. Journal of Agricultural and Food Chemistry 51:2619−24 doi: 10.1021/jf026082n
CrossRef Google Scholar
|
[116]
|
Smyrniotopoulos V, Merten C, Kaiser M, Tasdemir D. 2017. Bifurcatriol, a new antiprotozoal acyclic diterpene from the brown alga Bifurcaria bifurcata. Marine Drugs 15:245 doi: 10.3390/md15080245
CrossRef Google Scholar
|
[117]
|
Cantillo-Ciau Z, Moo-Puc R, Quijano L, Freile-Pelegrín Y. 2010. The tropical brown alga Lobophora variegata: a source of antiprotozoal compounds. Marine Drugs 8:1292−304 doi: 10.3390/md8041292
CrossRef Google Scholar
|
[118]
|
Jiménez-Escrig A, Gómez-Ordóñez E, Rupérez P. 2011. Seaweed as a source of novel nutraceuticals: sulfated polysaccharides and peptides. Advances in Food and Nutrition Research 64:325−37 doi: 10.1016/B978-0-12-387669-0.00026-0
CrossRef Google Scholar
|
[119]
|
Rupérez P, Toledano G. 2003. Indigestible fraction of edible marine seaweeds. Journal of the Science of Food and Agriculture 83:1267−72 doi: 10.1002/jsfa.1536
CrossRef Google Scholar
|
[120]
|
Fleurence J. 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology 10:25−28 doi: 10.1016/S0924-2244%2899%2900015-1
CrossRef Google Scholar
|
[121]
|
Wijesekara I, Kim SK. 2010. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry. Marine Drugs 8:1080−93 doi: 10.3390/md8041080
CrossRef Google Scholar
|
[122]
|
Nasri R, Nasri M. 2013. Marine-derived bioactive peptides as new anticoagulant agents: a review. Current Protein & Peptide Science 14:199−204 doi: 10.2174/13892037113149990042
CrossRef Google Scholar
|
[123]
|
Colon M, Guevara P, Gerwick WH, Ballantine D. 1987. 5'-Hydroxyisoavrainvilleol, a new diphenylmethane derivative from the tropical green alga Avrainvillea nigricans. Journal of Natural Products 50:368−74 doi: 10.1021/np50051a005
CrossRef Google Scholar
|
[124]
|
Besednova NN, Andryukov BG, Zaporozhets TS, Kryzhanovsky SP, Fedyanina LN, et al. 2021. Antiviral effects of polyphenols from marine algae. Biomedicines 9:200 doi: 10.3390/biomedicines9020200
CrossRef Google Scholar
|
[125]
|
Skjånes K, Rebours C, Lindblad P. 2013. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology 33:172−215 doi: 10.3109/07388551.2012.681625
CrossRef Google Scholar
|
[126]
|
Klein J, Verlaque M. 2008. The Caulerpa racemosa invasion: a critical review. Marine Pollution Bulletin 56:205−25 doi: 10.1016/j.marpolbul.2007.09.043
CrossRef Google Scholar
|
[127]
|
de Souza ET, de Lira DP, de Queiroz AC, da Silva DJC, de Aquino AB, et al. 2009. The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Marine Drugs 7:689−704 doi: 10.3390/md7040689
CrossRef Google Scholar
|
[128]
|
Paul VJ, Littler MM, Littler DS, Fenical W. 1987. Evidence for chemical defense in tropical green alga Caulerpa ashmeadii (Caulerpaceae: Chlorophyta): Isolation of new bioactive sesquiterpenoids. Journal of Chemical Ecology 13:1171−85 doi: 10.1007/BF01020547
CrossRef Google Scholar
|
[129]
|
Smyrniotopoulos V, Abatis D, Tziveleka LA, Tsitsimpikou C, Roussis V, et al. 2003. Acetylene sesquiterpenoid esters from the green alga Caulerpa prolifera. Journal of Natural Products 66:21−24 doi: 10.1021/np0202529
CrossRef Google Scholar
|
[130]
|
Paul VJ, Cronan JM Jr, Cardellina JH II. 1993. Isolation of new brominated sesquiterpene feeding deterrents from tropical green alga Neomeris annulata (Dasycladaceae: Chlorophyta). Journal of Chemical Ecology 19:1847−60 doi: 10.1007/BF00983791
CrossRef Google Scholar
|
[131]
|
Withers NW, Alberte RS, Lewin RA, Thornber JP, Britton G, et al. 1978. Photosynthetic unit size, carotenoids, and chlorophyll-protein composition of Prochloron sp., a prokaryotic green alga. PNAS 75:2301−5 doi: 10.1073/pnas.75.5.2301
CrossRef Google Scholar
|
[132]
|
Heck Hay KL Jr, Hays G, Orth RJ. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253:123−36 doi: 10.3354/meps253123
CrossRef Google Scholar
|
[133]
|
El Wahidi M, El Amraoui B, El Amraoui M, Bamhaoud T. 2015. Screening of antimicrobial activity of macroalgae extracts from the Moroccan Atlantic coast. Annales Pharmaceutiques Francaises 73:190−96 doi: 10.1016/j.pharma.2014.12.005
CrossRef Google Scholar
|
[134]
|
Hernández Y, González K, Valdés-Iglesias O, Zarabozo A, Portal Y, et al. 2016. Seasonal behavior of Thalassia testudinum (Hydrocharitaceae) metabolites. Revista de Biologia Tropical 64:1527−35 doi: 10.15517/rbt.v64i4.21037
CrossRef Google Scholar
|
[135]
|
van Ginneken VJT, Helsper JPFG, de Visser W, van Keulen H, Brandenburg WA. 2011. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas. Lipids in Health and Disease 10:104 doi: 10.1186/1476-511X-10-104
CrossRef Google Scholar
|
[136]
|
Yi J . 2001. Studies on the energy allocation and sugar content in the developing periods of Rhizomatous grasses. Journal of Arid Land Resources and Environment 13:14−18
Google Scholar
|
[137]
|
Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ. 2009. The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresource Technology 100:6658−60 doi: 10.1016/j.biortech.2009.07.017
CrossRef Google Scholar
|
[138]
|
Curnick DJ, Pettorelli N, Amir AA, Balke T, Barbier EB, et al. 2019. The value of small mangrove patches. Science 363:239 doi: 10.1126/science.aaw0809
CrossRef Google Scholar
|
[139]
|
Hosen MZ, Biswas A, Islam MR, Hossain SJ. 2021. Anti-bacterial, anti-diarrheal, and cytotoxic activities of edible fruits in the sundarbans mangrove forest of Bangladesh. Preventive Nutrition and Food Science 26:192−99 doi: 10.3746/pnf.2021.26.2.192
CrossRef Google Scholar
|
[140]
|
Budiyanto F, Alhomaidi EA, Mohammed AE, Ghandourah MA, Alorfi HS, et al. 2022. Exploring the mangrove fruit: from the phytochemicals to functional food development and the current progress in the Middle East. Marine Drugs 20:303 doi: 10.3390/md20050303
CrossRef Google Scholar
|
[141]
|
Lin Y, Wu X, Feng S, Jiang G, Luo J, et al. 2001. Five unique compounds: xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. The Journal of Organic Chemistry 66:6252−56 doi: 10.1021/jo015522r
CrossRef Google Scholar
|
[142]
|
Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, et al. 2003. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angewandte Chemie International Edition 42:355−57 doi: 10.1002/anie.200390115
CrossRef Google Scholar
|
[143]
|
Ancheeva E, Daletos G, Proksch P. 2018. Lead compounds from mangrove-associated microorganisms. Marine Drugs 16:319 doi: 10.3390/md16090319
CrossRef Google Scholar
|
[144]
|
Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR. 2016. Marine natural products. Natural Product Reports 33:382−431 doi: 10.1039/C5NP00156K
CrossRef Google Scholar
|