[1]
|
Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE. 2020. A methodological approach of the current literature on microplastic contamination in terrestrial environments: current knowledge and baseline considerations. Science of The Total Environment 730:139164 doi: 10.1016/j.scitotenv.2020.139164
CrossRef Google Scholar
|
[2]
|
Jusko TA, Oktapodas M, Palkovičová Murinová Lu, Babinská K, Babjaková J, et al. 2016. Demographic, reproductive, and dietary determinants of perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations in human colostrum. Environmental science & technology 50:7152−62 doi: 10.1021/acs.est.6b00195
CrossRef Google Scholar
|
[3]
|
Kim YN, Yoon JH, Kim KHJ. 2021. Microplastic contamination in soil environment – a review. Soil Science Annual 71:300−8 doi: 10.37501/soilsa/131646
CrossRef Google Scholar
|
[4]
|
Guo J, Huang X, Xiang L, Wang Y, Li Y, et al. 2020. Source, migration and toxicology of microplastics in soil. Environment International 137:105263 doi: 10.1016/j.envint.2019.105263
CrossRef Google Scholar
|
[5]
|
Huang W, Song B, Liang J, Niu Q, Zeng G, et al. 2021. Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials 405:124187 doi: 10.1016/j.jhazmat.2020.124187
CrossRef Google Scholar
|
[6]
|
Choong WS, Hadibarata T, Tang DKH. 2021. Abundance and distribution of microplastics in the water and riverbank sediment in Malaysia – a review. Biointerface Research in Applied Chemistry 11:11700−12 doi: 10.33263/briac114.1170011712
CrossRef Google Scholar
|
[7]
|
Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. 2017. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment 586:127−41 doi: 10.1016/j.scitotenv.2017.01.190
CrossRef Google Scholar
|
[8]
|
Burn S, Hoang M, Zarzo D, Olewniak F, Campos E, et al. 2015. Desalination techniques — a review of the opportunities for desalination in agriculture. Desalination 364:2−16 doi: 10.1016/j.desal.2015.01.041
CrossRef Google Scholar
|
[9]
|
Lusher A, Hollman P, Mendoza-Hill J. 2017. Microplastics in fisheries and aquaculture. Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAOfisheries and aquaculture technical paper 615. Rome: Food and Agriculture Organisation of the United Nations. 147 pp. https://www.fao.org/3/i7677e/i7677e.pdf
|
[10]
|
Chen Y, Leng Y, Liu X, Wang J. 2020. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environmental Pollution 257:113449 doi: 10.1016/j.envpol.2019.113449
CrossRef Google Scholar
|
[11]
|
Maity S, Guchhait R, Sarkar MB, Pramanick K. 2022. Occurrence and distribution of micro/nanoplastics in soils and their phytotoxic effects: a review. Plant, Cell & Environment 45:1011−28 doi: 10.1111/pce.14248
CrossRef Google Scholar
|
[12]
|
Dantas DV, Ribeiro CIR, de C. A. Frischknecht C, Machado R, Farias EGG. 2019. Ingestion of plastic fragments by the Guri sea catfish Genidens genidens (Cuvier, 1829) in a subtropical coastal estuarine system. Environmental Science and Pollution Research 26:8344−51 doi: 10.1007/s11356-019-04244-9
CrossRef Google Scholar
|
[13]
|
de Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN. 2018. Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Science of the total environment 645:1029−39 doi: 10.1016/j.scitotenv.2018.07.207
CrossRef Google Scholar
|
[14]
|
Galloway TS, Cole M, Lewis C. 2017. Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution 1:0116 doi: 10.1038/s41559-017-0116
CrossRef Google Scholar
|
[15]
|
Guzzetti E, Sureda A, Tejada S, Faggio C. 2018. Microplastic in marine organism: environmental and toxicological effects. Environmental Toxicology and Pharmacology 64:164−71 doi: 10.1016/j.etap.2018.10.009
CrossRef Google Scholar
|
[16]
|
Beieler RW. 2013. Pipelines for water conveyance and drainage. Reston, VA: American Society of Civil Engineers. 108 pp. https://ascelibrary.org/doi/book/10.1061/9780784412749
|
[17]
|
Katsumi N, Kusube T, Nagao S, Okochi H. 2021. Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere 267:129185 doi: 10.1016/j.chemosphere.2020.129185
CrossRef Google Scholar
|
[18]
|
Lwanga EH, Beriot N, Corradini F, Silva V, Yang X, et al. 2022. Review of microplastic sources, transport pathways and correlations with other soil stressors: a journey from agricultural sites into the environment. Chemical and Biological Technologies in Agriculture 9:20 doi: 10.1186/s40538-021-00278-9
CrossRef Google Scholar
|
[19]
|
Rillig MC. 2012. Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology 46:6453−54 doi: 10.1021/es302011r
CrossRef Google Scholar
|
[20]
|
Rillig MC, de Souza Machado AA, Lehmann A, Klümper U. 2018. Evolutionary implications of microplastics for soil biota. Environmental Chemistry 16:3−7 doi: 10.1071/EN18118
CrossRef Google Scholar
|
[21]
|
Zhou B, Wang J, Zhang H, Shi H, Fei Y, et al. 2020. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film. Journal of Hazardous Materials 388:121814 doi: 10.1016/j.jhazmat.2019.121814
CrossRef Google Scholar
|
[22]
|
Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, et al. 2019. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of The Total Environment 671:411−20 doi: 10.1016/j.scitotenv.2019.03.368
CrossRef Google Scholar
|
[23]
|
Zhang S, Han B, Sun Y, Wang F. 2020. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials 388:121775 doi: 10.1016/j.jhazmat.2019.121775
CrossRef Google Scholar
|
[24]
|
Yang T, Luo J, Nowack B. 2021. Characterization of nanoplastics, fibrils, and microplastics released during washing and abrasion of polyester textiles. Environmental Science & Technology 55:15873−81 doi: 10.1021/acs.est.1c04826
CrossRef Google Scholar
|
[25]
|
Yang J, Li R, Zhou Q, Li L, Li Y, et al. 2021. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure. Environmental Pollution 272:116028 doi: 10.1016/j.envpol.2020.116028
CrossRef Google Scholar
|
[26]
|
van den Berg P, Huerta-Lwanga E, Corradini F, Geissen V. 2020. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution 261:114198 doi: 10.1016/j.envpol.2020.114198
CrossRef Google Scholar
|
[27]
|
Zhang L, Xie Y, Liu J, Zhong S, Qian Y, et al. 2020. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environmental Science & Technology 54:4248−55 doi: 10.1021/acs.est.9b07905
CrossRef Google Scholar
|
[28]
|
Crossman J, Hurley RR, Futter M, Nizzetto L. 2020. Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Science of The Total Environment 724:138334 doi: 10.1016/j.scitotenv.2020.138334
CrossRef Google Scholar
|
[29]
|
Shruti V, Kutralam-Muniasamy G. 2019. Bioplastics: missing link in the era of Microplastics. Science of the Total Environment 697:134139 doi: 10.1016/j.scitotenv.2019.134139
CrossRef Google Scholar
|
[30]
|
Mani T, Hauk A, Walter U, Burkhardt-Holm P. 2016. Microplastics profile along the Rhine River. Scientific Reports 5:17988 doi: 10.1038/srep17988
CrossRef Google Scholar
|
[31]
|
Zhang K, Gong W, Lv J, Xiong X, Wu C. 2015. Accumulation of floating microplastics behind the Three Gorges Dam. Environmental Pollution 204:117−23 doi: 10.1016/j.envpol.2015.04.023
CrossRef Google Scholar
|
[32]
|
Leslie HA, Brandsma SH, van Velzen MJM, Vethaak AD. 2017. Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International 101:133−42 doi: 10.1016/j.envint.2017.01.018
CrossRef Google Scholar
|
[33]
|
Silva GC, Galleguillos Madrid FM, Hernández D, Pincheira G, Peralta AK, et al. 2021. Microplastics and their effect in horticultural crops: food safety and plant stress. Agronomy 11:1528 doi: 10.3390/agronomy11081528
CrossRef Google Scholar
|
[34]
|
Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, et al. 2014. High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin 85:156−63 doi: 10.1016/j.marpolbul.2014.06.001
CrossRef Google Scholar
|
[35]
|
Su L, Xue Y, Li L, Yang D, Kolandhasamy P, et al. 2016. Microplastics in Taihu Lake, China. Environmental Pollution 216:711−19 doi: 10.1016/j.envpol.2016.06.036
CrossRef Google Scholar
|
[36]
|
Enfrin M, Lee J, Le-Clech P, Dumée LF. 2020. Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano-and microplastics. Journal of Membrane Science 601:117890 doi: 10.1016/j.memsci.2020.117890
CrossRef Google Scholar
|
[37]
|
Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology 46:3060−75 doi: 10.1021/es2031505
CrossRef Google Scholar
|
[38]
|
Hanvey JS, Lewis PJ, Lavers JL, Crosbie ND, Pozo K, et al. 2017. A review of analytical techniques for quantifying microplastics in sediments. Analytical Methods 9:1369−83 doi: 10.1039/C6AY02707E
CrossRef Google Scholar
|
[39]
|
Sarau G, Kling L, Oßmann BE, Unger AK, Vogler F, Christiansen SH. 2020. Correlative microscopy and spectroscopy workflow for microplastics. Applied Spectroscopy 74:1155−60 doi: 10.1177/0003702820916250
CrossRef Google Scholar
|
[40]
|
Wang Z, Wagner J, Ghosal S, Bedi G, Wall S. 2017. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Science of The Total Environment 603-604:616−26 doi: 10.1016/j.scitotenv.2017.06.047
CrossRef Google Scholar
|
[41]
|
Sun W, Jin C, Bai Y, Ma R, Deng Y, et al. 2022. Blood uptake and urine excretion of nano- and micro-plastics after a single exposure. Science of The Total Environment 848:157639 doi: 10.1016/j.scitotenv.2022.157639
CrossRef Google Scholar
|
[42]
|
Lin J, Xu X, Yue B, Li Y, Zhou Q, et al. 2021. A novel thermoanalytical method for quantifying microplastics in marine sediments. Science of The Total Environment 760:144316 doi: 10.1016/j.scitotenv.2020.144316
CrossRef Google Scholar
|
[43]
|
Ly NH, Kim MK, Lee H, Lee C, Son SJ, et al. 2022. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. Journal of Nanostructure in Chemistry 12:865−88 doi: 10.1007/s40097-022-00506-0
CrossRef Google Scholar
|
[44]
|
Sarfo DK, Izake EL, O'Mullane AP, Ayoko GA. 2019. Fabrication of nanostructured SERS substrates on conductive solid platforms for environmental application. Critical Reviews in Environmental Science and Technology 49:1294−329 doi: 10.1080/10643389.2019.1576468
CrossRef Google Scholar
|
[45]
|
Brandt J, Mattsson K, Hassellöv M. 2021. Deep learning for reconstructing low-quality FTIR and Raman Spectra─a case study in microplastic analyses. Analytical Chemistry 93:16360−68 doi: 10.1021/acs.analchem.1c02618
CrossRef Google Scholar
|
[46]
|
Paul A, Wander L, Becker R, Goedecke C, Braun U. 2019. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Environmental Science and Pollution Research International 26:7364−74 doi: 10.1007/s11356-018-2180-2
CrossRef Google Scholar
|
[47]
|
Vidal C, Pasquini C. 2021. A comprehensive and fast microplastics identification based on near-infrared hyperspectral imaging (HSI-NIR) and chemometrics. Environmental Pollution 285:117251 doi: 10.1016/j.envpol.2021.117251
CrossRef Google Scholar
|
[48]
|
Huang H, Sun Z, Zhang Z, Chen X, Di Y, et al. 2021. The identification of spherical engineered microplastics and microalgae by micro-hyperspectral imaging. Bulletin of Environmental Contamination and Toxicology 107:764−69 doi: 10.1007/s00128-021-03131-9
CrossRef Google Scholar
|
[49]
|
Hermabessiere L, Himber C, Boricaud B, Kazour M, Amara R, et al. 2018. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Analytical and Bioanalytical Chemistry 410:6663−76 doi: 10.1007/s00216-018-1279-0
CrossRef Google Scholar
|
[50]
|
Vilakati B, Sivasankar V, Nyoni H, Mamba BB, Omine K, et al. 2021. The Py - GC-TOF-MS analysis and characterization of microplastics (MPs) in a wastewater treatment plant in Gauteng Province, South Africa. Ecotoxicology and Environmental Safety 222:112478 doi: 10.1016/j.ecoenv.2021.112478
CrossRef Google Scholar
|
[51]
|
Liu Y, Li R, Yu J, Ni F, Sheng Y, et al. 2021. Separation and identification of microplastics in marine organisms by TGA-FTIR-GC/MS: a case study of mussels from coastal China. Environmental Pollution 272:115946 doi: 10.1016/j.envpol.2020.115946
CrossRef Google Scholar
|
[52]
|
Cutroneo L, Reboa A, Besio G, Borgogno F, Canesi L, et al. 2020. Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment. Environmental Science and Pollution Research International 27:8938−52 doi: 10.1007/s11356-020-07783-8
CrossRef Google Scholar
|
[53]
|
Shan J, Zhao J, Zhang Y, Liu L, Wu F, et al. 2019. Simple and rapid detection of microplastics in seawater using hyperspectral imaging technology. Analytica Chimica Acta 1050:161−68 doi: 10.1016/j.aca.2018.11.008
CrossRef Google Scholar
|
[54]
|
Fu Z, Chen G, Wang W, Wang J. 2020. Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China. Environmental Pollution 266:115098 doi: 10.1016/j.envpol.2020.115098
CrossRef Google Scholar
|
[55]
|
Kumar R, Sharma P, Bandyopadhyay S. 2021. Evidence of microplastics in wetlands: extraction and quantification in freshwater and coastal ecosystems. Journal of Water Process Engineering 40:101966 doi: 10.1016/j.jwpe.2021.101966
CrossRef Google Scholar
|
[56]
|
Sun J, Dai X, Wang Q, van Loosdrecht MCM, Ni B. 2019. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research 152:21−37 doi: 10.1016/j.watres.2018.12.050
CrossRef Google Scholar
|
[57]
|
Li Q, Wu J, Zhao X, Gu X, Ji R. 2019. Separation and identification of microplastics from soil and sewage sludge. Environmental Pollution 254:113076 doi: 10.1016/j.envpol.2019.113076
CrossRef Google Scholar
|
[58]
|
Castelvetro V, Corti A, Biale G, Ceccarini A, Degano I, et al. 2021. New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by-products. Environmental Science and Pollution Research International 28:46764−80 doi: 10.1007/s11356-021-12466-z
CrossRef Google Scholar
|
[59]
|
Lv L, Yan X, Feng L, Jiang S, Lu Z, et al. 2021. Challenge for the detection of microplastics in the environment. Water Environment Research 93:5−15 doi: 10.1002/wer.1281
CrossRef Google Scholar
|
[60]
|
Deng Y, Zhang Y, Lemos B, Ren H. 2017. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports 7:46687 doi: 10.1038/srep46687
CrossRef Google Scholar
|
[61]
|
Braun T, Ehrlich L, Henrich W, Koeppel S, Lomako I, et al. 2021. Detection of microplastic in human placenta and meconium in a clinical setting. Pharmaceutics 13:921 doi: 10.3390/pharmaceutics13070921
CrossRef Google Scholar
|
[62]
|
Syakti AD, Hidayati NV, Jaya YV, Siregar SH, Yude R, et al. 2018. Simultaneous grading of microplastic size sampling in the Small Islands of Bintan water, Indonesia. Marine Pollution Bulletin 137:593−600 doi: 10.1016/j.marpolbul.2018.11.005
CrossRef Google Scholar
|
[63]
|
Baini M, Fossi MC, Galli M, Caliani I, Campani T, et al. 2018. Abundance and characterization of microplastics in the coastal waters of Tuscany (Italy): the application of the MSFD monitoring protocol in the Mediterranean Sea. Marine Pollution Bulletin 133:543−52 doi: 10.1016/j.marpolbul.2018.06.016
CrossRef Google Scholar
|
[64]
|
Pan Z, Guo H, Chen H, Wang S, Sun X, et al. 2019. Microplastics in the Northwestern Pacific: abundance, distribution, and characteristics. Science of The Total Environment 650:1913−22 doi: 10.1016/j.scitotenv.2018.09.244
CrossRef Google Scholar
|
[65]
|
Zobkov MB, Esiukova EE, Zyubin AY, Samusev IG. 2019. Microplastic content variation in water column: the observations employing a novel sampling tool in stratified Baltic Sea. Marine Pollution Bulletin 138:193−205 doi: 10.1016/j.marpolbul.2018.11.047
CrossRef Google Scholar
|
[66]
|
Bagaev A, Khatmullina L, Chubarenko I. 2018. Anthropogenic microlitter in the Baltic Sea water column. Marine Pollution Bulletin 129:918−23 doi: 10.1016/j.marpolbul.2017.10.049
CrossRef Google Scholar
|
[67]
|
Cai M, He H, Liu M, Li S, Tang G, et al. 2018. Lost but can't be neglected: huge quantities of small microplastics hide in the South China Sea. Science of The Total Environment 633:1206−16 doi: 10.1016/j.scitotenv.2018.03.197
CrossRef Google Scholar
|
[68]
|
Zhu J, Zhang Q, Li Y, Tan S, Kang Z, et al. 2019. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Science of The Total Environment 658:62−68 doi: 10.1016/j.scitotenv.2018.12.192
CrossRef Google Scholar
|
[69]
|
Saliu F, Montano S, Garavaglia MG, Lasagni M, Seveso D, et al. 2018. Microplastic and charred microplastic in the Faafu Atoll, Maldives. Marine Pollution Bulletin 136:464−71 doi: 10.1016/j.marpolbul.2018.09.023
CrossRef Google Scholar
|
[70]
|
Li J, Yang D, Li L, Jabeen K, Shi H. 2015. Microplastics in commercial bivalves from China. Environmental Pollution 207:190−95 doi: 10.1016/j.envpol.2015.09.018
CrossRef Google Scholar
|
[71]
|
Piehl S, Leibner A, Löder MGJ, Dris R, Bogner C, et al. 2018. Identification and quantification of macro- and microplastics on an agricultural farmland. Scientific Reports 8:17950 doi: 10.1038/s41598-018-36172-y
CrossRef Google Scholar
|
[72]
|
Liu M, Lu S, Song Y, Lei L, Hu J, et al. 2018. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution 242:855−62 doi: 10.1016/j.envpol.2018.07.051
CrossRef Google Scholar
|
[73]
|
Azeem I, Adeel M, Ahmad MA, Shakoor N, Jiangcuo GD, et al. 2021. Uptake and accumulation of nano/microplastics in plants: a critical review. Nanomaterials 11:2935 doi: 10.3390/nano11112935
CrossRef Google Scholar
|
[74]
|
Li C, Gao Y, He S, Chi H, Li Z, et al. 2021. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry. Environmental Science & Technology Letters 8:633−38 doi: 10.1021/acs.estlett.1c00369
CrossRef Google Scholar
|
[75]
|
Lozano YM, Aguilar-Trigueros CA, Onandia G, Maaß S, Zhao T, et al. 2021. Effects of microplastics and drought on soil ecosystem functions and multifunctionality. Journal of Applied Ecology 58:988−96 doi: 10.1111/1365-2664.13839
CrossRef Google Scholar
|
[76]
|
Lozano YM, Lehnert T, Linck LT, Lehmann A, Rillig MC. 2021. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science 12:616645 doi: 10.3389/fpls.2021.616645
CrossRef Google Scholar
|
[77]
|
Lian J, Wu J, Xiong H, Zeb A, Yang T, et al. 2020. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials 385:121620 doi: 10.1016/j.jhazmat.2019.121620
CrossRef Google Scholar
|
[78]
|
Li L, Luo Y, Peijnenburg WJGM, Li R, Yang J, et al. 2020. Confocal measurement of microplastics uptake by plants. MethodsX 7:100750 doi: 10.1016/j.mex.2019.11.023
CrossRef Google Scholar
|
[79]
|
Liu Y, Guo R, Zhang S, Sun Y, Wang F. 2022. Uptake and translocation of nano/microplastics by rice seedlings: evidence from a hydroponic experiment. Journal of Hazardous Materials 421:126700 doi: 10.1016/j.jhazmat.2021.126700
CrossRef Google Scholar
|
[80]
|
Dong Y, Gao M, Song Z, Qiu W. 2020. Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution 259:113892 doi: 10.1016/j.envpol.2019.113892
CrossRef Google Scholar
|
[81]
|
Li L, Zhou Q, Yin N, Tu C, Luo Y. 2019. Uptake and accumulation of microplastics in an edible plant. Chinese Science Bulletin 64:928−34 doi: 10.1360/N972018-00845
CrossRef Google Scholar
|
[82]
|
Sun X, Yuan X, Jia Y, Feng L, Zhu F, et al. 2020. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology 15:755−60 doi: 10.1038/s41565-020-0707-4
CrossRef Google Scholar
|
[83]
|
Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, et al. 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability 3:929−37 doi: 10.1038/s41893-020-0567-9
CrossRef Google Scholar
|
[84]
|
Luo Y, Li L, Feng Y, Li R, Yang J, et al. 2022. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology 17:424−31 doi: 10.1038/s41565-021-01063-3
CrossRef Google Scholar
|
[85]
|
Yin L, Wen X, Huang D, Du C, Deng R, et al. 2021. Interactions between microplastics/nanoplastics and vascular plants. Environmental Pollution 290:117999 doi: 10.1016/j.envpol.2021.117999
CrossRef Google Scholar
|
[86]
|
Battisti C, Fanelli G, Filpa A, Cerfolli F. 2020. Giant Reed (Arundo donax) wrack as sink for plastic beach litter: first evidence and implication. Marine Pollution Bulletin 155:111179 doi: 10.1016/j.marpolbul.2020.111179
CrossRef Google Scholar
|
[87]
|
Taylor SE, Pearce CI, Sanguinet KA, Hu D, Chrisler WB, et al. 2020. Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots. Environmental Science: Nano 7:1942−53 doi: 10.1039/D0EN00309C
CrossRef Google Scholar
|
[88]
|
Chen G, Feng Q, Wang J. 2020. Mini-review of microplastics in the atmosphere and their risks to humans. Science of the Total Environment 703:135504 doi: 10.1016/j.scitotenv.2019.135504
CrossRef Google Scholar
|
[89]
|
Liu K, Wang X, Song Z, Wei N, Li D. 2020. Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Science of The Total Environment 742:140523 doi: 10.1016/j.scitotenv.2020.140523
CrossRef Google Scholar
|
[90]
|
Oliveri Conti G, Ferrante M, Banni M, Favara C, Nicolosi I, et al. 2020. Micro-and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research 187:109677 doi: 10.1016/j.envres.2020.109677
CrossRef Google Scholar
|
[91]
|
Zhang F, Zhao Y, Wang D, Yan M, Zhang J, et al. 2021. Current technologies for plastic waste treatment: a review. Journal of Cleaner Production 282:124523 doi: 10.1016/j.jclepro.2020.124523
CrossRef Google Scholar
|
[92]
|
Dovidat LC, Brinkmann BW, Vijver MG, Bosker T. 2020. Plastic particles adsorb to the roots of freshwater vascular plant Spirodela polyrhiza but do not impair growth. Limnology and Oceanography Letters 5:37−45 doi: 10.1002/lol2.10118
CrossRef Google Scholar
|
[93]
|
Mateos-Cárdenas A, Scott DT, Seitmaganbetova G, van Pelt Frank FNAM, O'Halloran J, et al. 2019. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Science of The Total Environment 689:413−21 doi: 10.1016/j.scitotenv.2019.06.359
CrossRef Google Scholar
|
[94]
|
Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, et al. 2014. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America 111:10239−44 doi: 10.1073/pnas.1314705111
CrossRef Google Scholar
|
[95]
|
Jiang X, Chen H, Liao Y, Ye Z, Li M, et al. 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution 250:831−38 doi: 10.1016/j.envpol.2019.04.055
CrossRef Google Scholar
|
[96]
|
Zhou J, Gui H, Banfield CC, Wen Y, Zang H, et al. 2021. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology and Biochemistry 156:108211 doi: 10.1016/j.soilbio.2021.108211
CrossRef Google Scholar
|
[97]
|
Liu L, Xu K, Zhang B, Ye Y, Zhang Q, et al. 2021. Cellular internalization and release of polystyrene microplastics and nanoplastics. Science of The Total Environment 779:146523 doi: 10.1016/j.scitotenv.2021.146523
CrossRef Google Scholar
|
[98]
|
Giorgetti L, Spanò C, Muccifora S, Bottega S, Barbieri F, et al. 2020. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiology and Biochemistry 149:170−77 doi: 10.1016/j.plaphy.2020.02.014
CrossRef Google Scholar
|
[99]
|
Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, et al. 2014. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves. Science of The Total Environment 476–477:667−76 doi: 10.1016/j.scitotenv.2013.12.089
CrossRef Google Scholar
|
[100]
|
Bi M, He Q, Chen Y. 2020. What roles are terrestrial plants playing in global microplastic cycling? Environmental Science & Technology 54:5325−27 doi: 10.1021/acs.est.0c01009
CrossRef Google Scholar
|
[101]
|
Lian J, Liu W, Meng L, Wu J, Chao L, et al. 2021. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environmental Pollution 280:116978 doi: 10.1016/j.envpol.2021.116978
CrossRef Google Scholar
|
[102]
|
Sun H, Lei C, Xu J, Li R. 2021. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. Journal of Hazardous Materials 416:125854 doi: 10.1016/j.jhazmat.2021.125854
CrossRef Google Scholar
|
[103]
|
Kalčíková G, Gotvajn AŽ, Kladnik A, Jemec A. 2017. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environmental Pollution 230:1108−15 doi: 10.1016/j.envpol.2017.07.050
CrossRef Google Scholar
|
[104]
|
van Weert S, Redondo-Hasselerharm PE, Diepens NJ, Koelmans AA. 2019. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Science of the Total Environment 654:1040−47 doi: 10.1016/j.scitotenv.2018.11.183
CrossRef Google Scholar
|
[105]
|
Yu H, Zhang X, Hu J, Peng J, Qu J. 2020. Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems. Environmental Pollution 265:114830 doi: 10.1016/j.envpol.2020.114830
CrossRef Google Scholar
|
[106]
|
Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774−81 doi: 10.1016/j.chemosphere.2019.03.163
CrossRef Google Scholar
|
[107]
|
de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, et al. 2019. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology 53:6044−52 doi: 10.1021/acs.est.9b01339
CrossRef Google Scholar
|
[108]
|
Gao M, Liu Y, Song Z. 2019. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere 237:124482 doi: 10.1016/j.chemosphere.2019.124482
CrossRef Google Scholar
|
[109]
|
Pignattelli S, Broccoli A, Renzi M. 2020. Physiological responses of garden cress (L. sativum) to different types of microplastics. Science of the Total Environment 727:138609 doi: 10.1016/j.scitotenv.2020.138609
CrossRef Google Scholar
|
[110]
|
Wang F, Zhang X, Zhang S, Zhang S, Sun Y. 2020. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791 doi: 10.1016/j.chemosphere.2020.126791
CrossRef Google Scholar
|
[111]
|
Meng F, Yang X, Riksen M, Xu M, Geissen V. 2021. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Science of The Total Environment 755:142516 doi: 10.1016/j.scitotenv.2020.142516
CrossRef Google Scholar
|
[112]
|
Qi Y, Yang X, Pelaez AM, Lwanga EH, Beriot N, et al. 2018. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of The Total Environment 645:1048−56 doi: 10.1016/j.scitotenv.2018.07.229
CrossRef Google Scholar
|
[113]
|
Li Z, Li Q, Li R, Zhou J, Wang G. 2021. The distribution and impact of polystyrene nanoplastics on cucumber plants. Environmental Science and Pollution Research 28:16042−53 doi: 10.1007/s11356-020-11702-2
CrossRef Google Scholar
|
[114]
|
Lian J, Liu W, Sun Y, Men S, Wu J, et al. 2022. Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. Journal of Hazardous Materials 423:127241 doi: 10.1016/j.jhazmat.2021.127241
CrossRef Google Scholar
|
[115]
|
Zhang Y, Yang X, Luo Z, Lai J, Li C, et al. 2022. Effects of polystyrene nanoplastics (PSNPs) on the physiology and molecular metabolism of corn (Zea mays L.) seedlings. Science of The Total Environment 806:150895 doi: 10.1016/j.scitotenv.2021.150895
CrossRef Google Scholar
|
[116]
|
Wang J, Lu S, Bian H, Xu M, Zhu W, et al. 2022. Effects of individual and combined polystyrene nanoplastics and phenanthrene on the enzymology, physiology, and transcriptome parameters of rice (Oryza sativa L.). Chemosphere 304:135341 doi: 10.1016/j.chemosphere.2022.135341
CrossRef Google Scholar
|
[117]
|
Wang J, Lu S, Guo L, Wang P, He C, et al. 2022. Effects of polystyrene nanoplastics with different functional groups on rice (Oryza sativa L.) seedlings: combined transcriptome, enzymology, and physiology. Science of The Total Environment 834:155092 doi: 10.1016/j.scitotenv.2022.155092
CrossRef Google Scholar
|
[118]
|
Yu C, Zeng H, Wang Q, Chen W, Chen W, et al. 2022. Multi-omics analysis reveals the molecular responses of Torreya grandis shoots to nanoplastic pollutant. Journal of Hazardous Materials 436:129181 doi: 10.1016/j.jhazmat.2022.129181
CrossRef Google Scholar
|
[119]
|
Zhou C, Lu C, Mai L, Bao L, Liu L, et al. 2021. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials 401:123412 doi: 10.1016/j.jhazmat.2020.123412
CrossRef Google Scholar
|
[120]
|
Maity S, Chatterjee A, Guchhait R, De S, Pramanick K. 2020. Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L. Journal of Hazardous Materials 385:121560 doi: 10.1016/j.jhazmat.2019.121560
CrossRef Google Scholar
|
[121]
|
Padervand M, Lichtfouse E, Robert D, Wang C. 2020. Removal of microplastics from the environment. A review. Environmental Chemistry Letters 18:807−28 doi: 10.1007/s10311-020-00983-1
CrossRef Google Scholar
|
[122]
|
Ahmed R, Hamid AK, Krebsbach SA, He J, Wang D. 2022. Critical review of microplastics removal from the environment. Chemosphere 293:1335577 doi: 10.1016/j.chemosphere.2022.133557
CrossRef Google Scholar
|
[123]
|
Zhang Y, Liu S, Liu Q, Wang X, Jiang Z, et al. 2019. The role of debris cover in catchment runoff: a case study of the Hailuogou catchment, south-eastern Tibetan Plateau. Water 11:2601 doi: 10.3390/w11122601
CrossRef Google Scholar
|
[124]
|
Fryczkowska B, Przywara L. 2021. Removal of microplastics from industrial wastewater utilizing an ultrafiltration composite membrane rGO/PAN application. Desalination and Water Treatment 214:252−62 doi: 10.5004/dwt.2021.26665
CrossRef Google Scholar
|
[125]
|
Tang Y, Zhang S, Su Y, Wu D, Zhao Y, et al. 2021. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chemical Engineering Journal 406:126804 doi: 10.1016/j.cej.2020.126804
CrossRef Google Scholar
|
[126]
|
Chen Y, Chen Y, Miao C, Wang Y, Gao G, et al. 2020. Metal-organic framework-based foams for efficient microplastics removal. Journal of Materials Chemistry A 8:14644−52 doi: 10.1039/D0TA04891G
CrossRef Google Scholar
|
[127]
|
Zandieh M, Liu JW. 2022. Removal and degradation of microplastics using the magnetic and nanozyme activities of bare iron oxide nanoaggregates. Angewandte Chemie International Edition 61:e202212013 doi: 10.1002/anie.202212013
CrossRef Google Scholar
|
[128]
|
Mishra SR, Ahmaruzzaman M. 2021. Cerium oxide and its nanocomposites: structure, synthesis, and wastewater treatment applications. Materials Today Communications 28:102562 doi: 10.1016/j.mtcomm.2021.102562
CrossRef Google Scholar
|
[129]
|
Qiu X, Ma S, Zhang J, Fang L, Guo X, et al. 2022. Dissolved organic matter promotes the aging process of polystyrene microplastics under dark and ultraviolet light conditions: the crucial role of reactive oxygen species. Environmental Science & Technology 56:10149−60 doi: 10.1021/acs.est.2c03309
CrossRef Google Scholar
|
[130]
|
Tian C, Lv J, Zhang W, Wang H, Chao J, et al. 2022. Accelerated degradation of microplastics at the liquid interface of ice crystals in frozen aqueous solutions. Angewandte Chemie International Edition 61:e202206947 doi: 10.1002/anie.202206947
CrossRef Google Scholar
|
[131]
|
Othman AR, Hasan HA, Muhamad MH, Ismail N', Abdullah SR. 2021. Microbial degradation of microplastics by enzymatic processes: a review. Environmental Chemistry Letters 19:3057−73 doi: 10.1007/s10311-021-01197-9
CrossRef Google Scholar
|
[132]
|
Jeyakumar D, Chirsteen J, Doble M. 2013. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresource Technology 148:78−85 doi: 10.1016/j.biortech.2013.08.074
CrossRef Google Scholar
|
[133]
|
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196−99 doi: 10.1126/science.aad6359
CrossRef Google Scholar
|
[134]
|
Paço A, Duarte K, da Costa JP, Santos PSM, Pereira R, et al. 2017. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of The Total Environment 586:10−15 doi: 10.1016/j.scitotenv.2017.02.017
CrossRef Google Scholar
|
[135]
|
Yuan J, Cao J, Yu F, Ma J. 2022. Microbial degradation of polystyrene microplastics by a novel isolated bacterium in aquatic ecosystem. Sustainable Chemistry and Pharmacy 30:100873 doi: 10.1016/j.scp.2022.100873
CrossRef Google Scholar
|
[136]
|
Mishra SR, Ahmaruzzaman M. 2022. Microplastics: identification, toxicity and their remediation from aqueous streams. Separation & Purification Reviews1−22 doi: 10.1080/15422119.2022.2096071
CrossRef Google Scholar
|
[137]
|
Nolte TM, Hartmann NB, Kleijn JM, Garnæs J, van de Meent D, et al. 2017. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology 183:11−20 doi: 10.1016/j.aquatox.2016.12.005
CrossRef Google Scholar
|
[138]
|
Sundbæk KB, Koch IDW, Villaro CG, Rasmussen NS, Holdt SL, et al. 2018. Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus. Journal of Applied Phycology 30:2923−27 doi: 10.1007/s10811-018-1472-8
CrossRef Google Scholar
|
[139]
|
Urso M, Pumera M. 2022. Nano/microplastics capture and degradation by autonomous nano/microrobots: a perspective. Advanced Functional Materials 32:2112120 doi: 10.1002/adfm.202112120
CrossRef Google Scholar
|
[140]
|
Beladi-Mousavi SM, Hermanová S, Ying Y, Plutnar J, Pumera M. 2021. A maze in plastic wastes: autonomous motile photocatalytic microrobots against microplastics. ACS Applied Materials & Interfaces 13:25102−10 doi: 10.1021/acsami.1c04559
CrossRef Google Scholar
|
[141]
|
Zhou H, Mayorga-Martinez CC, Pumera M. 2021. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots. Small Methods 5:2100230 doi: 10.1002/smtd.202100230
CrossRef Google Scholar
|
[142]
|
Urso M, Ussia M, Novotný F, Pumera M. 2022. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nature Communications 13:3573 doi: 10.1038/s41467-022-31161-2
CrossRef Google Scholar
|
[143]
|
Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, et al. 2019. Review of micro- and nanoplastic contamination in the food chain. Food Additives & Contaminants: Part A 36:639−73 doi: 10.1080/19440049.2019.1583381
CrossRef Google Scholar
|
[144]
|
Dessì C, Okoffo ED, O'Brien JW, Gallen M, Samanipour S, et al. 2021. Plastics contamination of store-bought rice. Journal of Hazardous Materials 416:125778 doi: 10.1016/j.jhazmat.2021.125778
CrossRef Google Scholar
|
[145]
|
Rillig MC, Lehmann A, de Souza Machado AA, Yang G. 2019. Microplastic effects on plants. New Phytologist 223:1066−70 doi: 10.1111/nph.15794
CrossRef Google Scholar
|
[146]
|
Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, et al. 2019. Detection of various microplastics in human stool: a prospective case series. Annals of Internal Medicine 171:453−57 doi: 10.7326/M19-0618
CrossRef Google Scholar
|
[147]
|
He D, Zhang Y, Gao W. 2021. Micro(nano)plastic contaminations from soils to plants: human food risks. Current Opinion in Food Science 41:116−21 doi: 10.1016/j.cofs.2021.04.001
CrossRef Google Scholar
|
[148]
|
Hirt N, Body-Malapel M. 2020. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Particle and Fibre Toxicology 17:57 doi: 10.1186/s12989-020-00387-7
CrossRef Google Scholar
|
[149]
|
Powell JJ, Faria N, Thomas-McKay E, Pele LC. 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. Journal of Autoimmunity 34:J226−J233 doi: 10.1016/j.jaut.2009.11.006
CrossRef Google Scholar
|
[150]
|
Prüst M, Meijer J, Westerink RH. 2020. The plastic brain: neurotoxicity of micro- and nanoplastics. Particle and fibre Toxicology 17:24 doi: 10.1186/s12989-020-00358-y
CrossRef Google Scholar
|
[151]
|
Mamun AA, Prasetya TAE, Dewi IR, Ahmad M. 2023. Microplastics in human food chains: food becoming a threat to health safety. Science of The Total Environment 858:159834 doi: 10.1016/j.scitotenv.2022.159834
CrossRef Google Scholar
|