-
CDs have been used to improve the stability of natural colorants in food during food processing and storage, or to prevent the formation of browning reactions by binding certain pigment compounds, such as anthocyanin, or by binding the substrate of enzymatic reaction, such as phenolic compounds in the enzymatic browning.
Effects on anthocyanin and carotenoid stability
-
The color is the first thing a consumer perceives about food products, making the appearance of food and beverages one of the most important characteristics. Anthocyanins are natural blue, red, and purple pigments (Fig. 1b). Fliszár-Nyúl et al. studied the effects of different β-CD bead polymer (BBD) concentrations on the color parameters of five red and three white wines from different grape varieties using the color-related Glories parameters: color intensity, tonality, Red%, Blue%, Yellow%[4]. Treatment at a concentration of 1.0 mg/mL BBP did not have any effect on the color properties of any of the wines studied, whereas BBP at concentration range of 1.0–15 mg/mL dose-dependently decreased the color intensities of the wines. Not surprisingly, greater changes were observed in the red wines than in the white wines. In addition, one red wine (portugieser) was clearly affected more by the β-CD treatments compared with the wines of other grape varieties. The results clearly indicate that the impact of treatment depends on the structures of anthocyanins.
Anthocyanins are labile compounds sensitive to impact by several environmental factors, such as pH, temperature, light, oxygen, co-pigment formation, enzymes, metal ions, and antioxidants[22,30]. Howard et al. studied the effects of pH (2.8, 3.2, and 3.6), β-CD (in the range of 0–3%, w/v), and storage temperature on the anthocyanins of chokeberries (Table 1)[30]. Their results showed that pH, β-CD concentration, and pH × β-CD interaction positively affected the anthocyanin content compared to the control juices that were not treated. They concluded that the juice containing 3% of the β-CD at natural pH of chokeberry (3.6) had 49% more anthocyanins than the juice without β-CD addition after 8-month storage. They discussed that anthocyanin structure changes in low pH has an important role in β-CD stabilization. Mourtzinos et al. studied the thermal stability of the anthocyanins of the roselle extract with and without the β-CD (Table 1)[38]. β-CD was mixed with anthocyanins at the 1:1 ratio (w/w). They observed higher thermal degradation with higher temperatures and longer treatment time, but the presence of the β-CD decreased the degradation rate and nearly doubled the half-life of the anthocyanins. In addition, Fernandes et al. reported increased thermal stability of the blackberry anthocyanins and decreased degradation of the anthocyanins under simulated gastrointestinal conditions when β-CD was used[39]. Lachowicz et al. studied the effect of the yeast strain, β-CD (1 g/L), and storage time (3 months at 4 ºC) on the physiochemical parameters, phenolic compound concentrations, sensory properties, and antioxidative activity of red apple cider[40]. They observed that fermentation with the β-CD had a positive effect on the pH value, color, antioxidative potency, and most of the polyphenols. However, fermentation with the β-CD resulted in red apple cider with the darkest color. In addition, additional β-CD resulted in the highest anthocyanin concentration and increment in the phenolic acid and flavan-3-ol concentrations after 3 months storage, whereas the fermentation solely with the yeast decreased these contents.
Table 1. Effects of the cyclodextrins on the individual compounds and sensory properties (appearance, flavor, taste) of food products.
Raw material Type of used cyclodextrin Methodology Analysed parameters Effects on chemical/food products Reference Instrumental analyses of sensory-active compounds Apple β-cyclodextrin
thiol-β-cyclodextrin700 µM (in 0.1 M sodium acetate buffer, pH 4.6) of β-CD or thiol-CD was added to apple slices, incubated at RT for 24 h. Inhibition of the enzymatic browning:
The CIE coordinatesThiol-CD exhibited considerably higher inhibition of the enzymatic browning. Thiol-CD treatment resulted lighter, less red and yellow color of apple slices, indicating less browning. [6] Apple M-β-cyclodextrin
(0, 30, 60, or 90 mM)CD in the 25 mL of distilled water. Color by the CIE coordinates Increased level of MBCD decreased more the total color difference and slowed down the changes of L*, a*, and b*. [51] Apple α- (10/30/40 mM) and β-cyclodextrins (5/10/15 mM) Apple juice with CD was treated with HPP (0/300/400/500 Mpa; 5 min, 22 °C). Browning index and phenolic compounds α-CD at 30 mM and β-CD at 15 mM level reduced the most HPP induced browning. [11] Chokeberry β-cyclodextrin
(0, 0.5%, 1%, or 3%)
in pH levels
(2.8, 3.2, 3.6)Different level of β-CD in different pH chokeberry juice. Storage at 25 and
4 °C for 2, 4, 6, 8 months.Monomeric anthocyanins Both pH and β-CD amount affected stability of anthocyanins during storage. Ambient storage temperature effected more on the degradation of anthocyanins than refrigerator temperature. [30] Peach α-cyclodextrin (0,
10, 30, and 60 mM)
M-β-cyclodextrin (MBCD, 0, 10, 20, and 30 mM)
β-cyclodextrin (0, 3, 5, and 10 mM)CD in 25 mL of distilled water. Color by the CIE coordinates Increased level of α-CD slowed down the changes of L* and ΔE*, and 60 mM of α-CD eliminated the change of L*. β-CD did not have effect on the color in any concentration. Increased level of MBCD slowed down the changes of L* and ΔE*. [81] Pomegranate β-cyclodextrin,
HP-β-cyclodextrin (0.5%, 1%, or 2%)Pomegranate juice treated with CDs and stored 3 months at 25 °C. Monomeric anthocyanins, TPC, FRSA CD type and level affected the degradation rate of anthocyanins. HP-CD stabilized more anthocyanins than β-CD. β-CD did not show protective effect on the TPC. 0.5% of HP-β-CD significantly increased TPC. FRSA did not change after 3-month storage in any sample. [9] Roselle extract β-cyclodextrin: anthocyanin (1:1) in extract Extract heated to 60, 70, 80, and 90 °C for 10−110 min. Total anthocyanin content The degradation of anthocyanins increased with increased heat and time, but presence of β-CD decreased the degradation. β-CD nearly doubled the half-time values of anthocyanins. [38] Tangerine β-cyclodextrin (1, 3, and 5 g%) Batch process, packed bed column process, and fluidized bed process with varying CD concentrations and process parameters were used. Limonin content Batch processing: direct correlation between CD content and limonin complexation. Column processing: 3 g% CD had better debittering result (94% limonin reduction) than batch processing. Fluidized bed process: juice flow rate effected on the binding rate of limonin, CD content did have only a little effect on limonin reduction. [60] Assessments by sensory panels and instrumental analyses Amanatsu
Grapefruit
Orange
β-cyclodextrin 0.3% (w/w) CD and 8% (w/w) of sucrose were added to the juice, heated to 95 °C for 10 min and cooled to RT. Bitterness (trained panel) Addition of CD decreased bitterness significantly of all studied citrus fruits. [80] Bitter gourd β-cyclodextrin
(0.25%−2%)β-CD was added to freshly pressed juice, stirred for 1 h at 25 °C, pH was adjusted to 3.5 and 2 g/L of stevia was added. Juice was pasteurized (95 °C, 2 min) Effect on sensory quality (trained panel), TPC, TAC, and antidiabetic potential All studied CD concentrations decreased bitterness. Addition of 1.5% of CD resulted the most acceptable juice. Increased level of CD increased TPC and TAC. Marginal reduction in antidiabetic activity was observed. [31] Grapefruit
Navel orangeβ-cyclodextrin 1 g/L in 50 mL of juice Cyclodextrin in the continuous flow fluid-bed or in batch process Concentration changes of limonin, nomilin, and naringin and impacts on the sensory properties (trained panel) Cyclodextrin polymer treatment decreased approximately 50% of bitter composition and sensory panel preferred debittered juices over non-treated. [82] Mandarin juice enriched with pomegranate and goji berries β-cyclodextrin and
HP-β-cyclodextrinJuice (mandarin 96%, goji berries 2%, pomegranate extract 1%, CD 1%) was pasteurized (98 °C, 30 s) and stored for 75 d at 4 °C. Stability of vitamin C, color, and retinol equivalents, antioxidant capacity and sensory properties (trained panel) Control juice without CDs had the most intense fresh mandarin aroma, β-CD had the second highest and HP-β-CD lowest. HP-β-CD had the best overall quality, the highest value of color intensity, vitamin C content, and retinol equivalents. [47] Orange juice β-cyclodextrin 13 mM of β-CD was added before juice pasteurization (98 °C for 20 s). Samples were stored at 20 °C for 145 d. TTS, acidity, pH, vitamin C, color by the CIE coordinates, carotenoids, antioxidant capacity, sensory quality (trained panel) Addition of β-CD did not have significant effect on the measured parameters. [46] Pear α-cyclodextrin (0,
15, 45, and 90 mM)Freshly pressed pear juice was mixed with distilled water containing CD. All juice samples were oxidized at stirrer for 20 min. Color by the CIE coordinates, volatile composition, and sensory evaluation (trained panel) Increased CD content delayed color changes. Oxidation increased concentrations of certain volatile compounds. Use of CD decreased contents of volatiles in concentration dependent manner. Only high CD content significantly modified volatile profile. 15 mM of CD had a significant positive effect on the sensory quality and 90 mM led to the deterioration of aroma and odor attributes. [83] Pear α-, β-, γ-cyclodextrins 15 mM of each CD was added to 25 mL of pear juice and mixed for 20 min. Enzymatic browning, volatile compounds, color, sensory properties (trained panel) CDs slower enzymatic browning by complexation of phenolic compounds. γ-CD significantly decreased the aroma and odor intensities, β-CD provided best color, and α-CD resulted increased global quality of pear juice. [26] CD(s) cyclodextrin(s); CIE coordinates: lightness (L*), red-green (a*), yellow-blue (b*), hue (H*), chroma (C*) total color difference (ΔE*), browning index (BI*); FRSA free radical scavenging activity; HP hydroxy propyl; HPP high pressure processing; MBCD maltosyl-β-cyclodextrin; TPC total phenolic content; TAC total antioxidant capacity; RT room temperature; TSS total soluble solids. Many studies have reported CDs' ability to prevent anthocyanin degradation. However, the effectiveness of CD also depends on anthocyanin structure. Kulcan et al. reported that β-CD and HP-β-CD did not effectively prevent analytical color loss of clear pomegranate juice during 3 months storage (Table 1)[9] .
Encapsulation of the anthocyanins in the CDs may increase the retention during food processing and the shelf life, but it can also reduce the intensity of the anthocyanin color[41]. Color fading is also known as anti-copigmentation phenomenon. It occurs when the colorless forms of anthocyanins, quinoidal base, hemiketal, and chalcone, are more preferred in the inclusion complexation. This leads to a shift in the pigment hydration equilibrium towards the formation of more colorless forms of anthocyanins. Environmental pH, concentration of the β-CD and anthocyanin structure has an effect on the rate of anti-copigmentation[41].
Carotenoids are natural orange, yellow, and red pigments, which occur in fruits, vegetables, algae, and photosynthetic bacteria. They have an important role in human diet due to their vitamin A, immune regulating, antioxidant, and intracellular communication activities. Carotenoids are lipid-soluble and instable, limiting their use in food products as colorants[23]. Inclusion complexation of carotenoids with cyclodextrins can improve water-solubility[42,43], general storage stability[43], and stability against light, oxide, or ozone induced degradation[44] of carotenoids, thus, improve color stability, when used in aqueous food products (Fig. 1c)[45]. However, Navarro et al. (Table 1) did not observe significant improvements in studied quality parameters with only slight increment in the contents of individual carotenoids, when they studied effects of β-CD (in both studies at the 1.5% rate) on the quality of ultra-frozen mandarin juice and pasteurized orange juice after storage for 145 d, respectively[46,47].
Effects on browning of fruits and vegetables
-
Browning of fruits and vegetables during processing effects their appearance, taste properties, and nutritional values. The browning is typically caused by the polyphenol oxidases (PPOs), which catalyze the oxidation of mono- and o-diphenols to their corresponding quinones, which are polymerized with protein or amino acids resulting in high molecular weight structures called melanin or melanoidin[48]. For tropical and subtropical fruits, the browning causes as high as 50% of the losses[49]. CDs can be used to slow down the enzymatic browning after juice processing by binding the enzyme substrates (Fig. 1a)[3,50] or they may act as secondary antioxidants by preventing premature oxidation of the primary antioxidant, such as an ascorbic acid[51]. The effectiveness of the CDs to inhibit the enzymatic browning is highly dependent on the enzyme substrates and, furthermore, the stability constant between the CD and substrates: the higher the stability constant, the better the inhibition activity[52,53]. The studies about the impact of CD treatment on the browning of banana pulp resulted in observations contradictory to the findings in other fruit juices, and the use of CDs was even found to enhance the browning in crude banana extracts[7,51]. Both of these banana studies concluded that this phenomenon was caused by CD complexation of the natural browning inhibiting substances. Furthermore, Ghidelli et al. reported that CD used at concentrations of 10–50 mM did not significantly affect the browning of persimmon extract or precipitate compared to the control sample[54].
In their study, Rho et al. used both β-CD (10 mM) and large ring cyclodextrin (LR-CD; cycloamylose; 10 mM) successfully to reduce oxidation of chlorogenic acid, caffeic acid, 3,4-dihydroxy-l-phenylalanine, cathecol, 4-methylcathecol, and pyrogallol (0.1–10 mM) and browning of apple juice[55] . Apple juice was treated with CDs in the range of 0–15 mM. They observed that β-CD and LR-CD presented similar inhibition efficiency against the oxidation of studied phenolic compounds by PPO, and on browning. In their storage study, both studied polymers decreased the degradation rate constant and increased the half-life of the studied phenolic compounds. In addition, Rho et al. studied effects of the β-CD and LR-CD on the color properties of apple juice[55]. Both polymers reduced color changes in the treated juice compared to the control juice. While the effects of both polymers showed a strong dependence on their concentration, LR-CD significantly delayed the browning rate of apple juice in smaller concentrations compared to β-CD.
In addition to their inhibition effects on intensities of browning, type of used CD also affects the rate of browning. Andreu-Sevilla et al. observed that treatment with three native CDs (15 mM) led to different rates of the color changes in pear juice (Table 1): α-CD slowed down the browning the most and γ-CD the least[29]. On the other hand, López-Nicolás et al. observed that maltosyl-β-CD (0–30 mM) and β-CD (0–10 mM) reduced browning of apple juice more than α-CD (0–60 mM; Table 1)[51].
Furthermore, CDs are reported to be effective against browning when they are used together with other polymers. Alvarez-Parrilla et al. studied the effects of the 4-hexylresorcinol (HR; 0.5 mM), β-CD (5 mM), and methyl jasmonate (MJ; 2 mM), or their combinations at the same concentration levels as in the individual treatments on the PPO-catalyzed oxidation of chlorogenic acid extracted form Red Delicious apples[52]. They observed higher inhibition of the catalytic activity of the PPO when HR and β-CD were used together, indicating a synergic effect between HR and β-CD. They suggested the synergic effect to be caused by different inhibition pathways: HR inhibits the oxidation by a competitive mechanism whereas β-CD inhibits oxidation by reducing the concentration of substrates with complexation. Any synergic effect was not observed between MJ and β-CD, which may have been due to the β-CD complexing MJ. However, de la Rosa et al. reported contrary results for the synergic inhibition effect of HR and β-CD[53]. They studied the inhibition effects of HR (0.5 mM) and β-CD (10 mM) on PPO extracted from Prisco peaches with catechol, 4-methyl catechol, and chlorogenic acid as substrates. When HR and β-CD were used together, they observed a decreased inhibition activity as regards PPO oxidation of the chlorogenic acid compared to single inhibitor treatments.
Additional β-CD may enhance the results of non-thermal technologies used to inhibit browning of fruit products. Zhang et al. studied the synergistic effects of high-intensity ultrasound (HIU; 0–400 W) and β-CD (0, 0.002, 0.004, 0.006, and 0.008 g/mL) on the browning degree of apple juice[56]. Addition of β-CD decreased the browning degree compared to HIU treatment used alone. In addition, additional β-CD in HIU increased a total phenolic compound content compared to HIU treatment alone. Finally, authors reported HIU to alter the structure of PPO and, thus, inhibiting enzyme activity, and β-CD to form inclusion complex with phenolic compounds and PPO inhibiting browning.
The browning of fruits and juices can also occur non-enzymatically. Karangwa et al. studied the effects of HP-β-CD and γ-CD treatments (1–5 g/100 mL) on non-homogenized and homogenized carrot-orange juices[5]. They observed that the studied CDs had different effects on the non-enzymatic browning rates: the HP-β-CD treatment significantly increased the non-enzymatic browning in both studied juice types and decreased the juice clarity, whereas the γ-CD treatment significantly decreased the browning in the non-homogenized juice.
-
Treatment with cyclodextrins is an effective way to reduce undesirable tastes, such as bitterness, and off-flavor properties in some food products. In addition, cyclodextrins can be used to improve the stability of many groups of compounds, such as anthocyanins and volatile compounds during processing of food. However, many studies use notably higher cyclodextrin concentrations than is recommended by food authorities. Even though the safety of some cyclodextrins are well evaluated and described, they may contain residual solvents, such as trichloroethylene (classified as carcinogenic to humans), making their use in such concentrations, in which they have shown to impact sensory properties, difficult. Encapsulation of hydrophobic compounds improves their water solubility, which has many beneficial effects, such as improved bioavailability and antioxidative activity of the target compounds. Studies have shown that successful use of the CD requires good planning and in-depth understanding of the chemical composition of the food product. Finally, more studies with lower cyclodextrin concentrations and synergic effects with other flavor masking or binding agents are needed.
-
About this article
Cite this article
Kelanne N, Yang B, Laaksonen O. 2024. Potential of cyclodextrins in food processing for improving sensory properties of food. Food Innovation and Advances 3(1): 1−10 doi: 10.48130/fia-0024-0001
Potential of cyclodextrins in food processing for improving sensory properties of food
- Received: 15 October 2023
- Revised: 16 January 2024
- Accepted: 22 January 2024
- Published online: 29 January 2024
Abstract: Cyclodextrins are tapered cyclic oligosaccharides, which are used to encapsulate a wide range of compounds, such as phytochemicals and drugs. They can be divided roughly into native, modified, and large-ring cyclodextrins: native- and large-ring cyclodextrins are prepared from starch by cyclodextrin glycosyltransferase and are further chemically modified, improving their chemical properties, such as water-solubility. Cyclodextrins have many possible applications in food processing due to their inclusion complexation characteristics. Cyclodextrins can be used to improve the color properties of food by protecting natural pigments from degradation during storage or by inhibiting enzymatic browning. In addition, encapsulation of bitter compounds inhibits their interactions with taste receptors in the oral cavity, decreasing undesirable taste properties. Finally, encapsulation of hydrophobic compounds improves their dispersion in the aqueous matrix, increasing the bioavailability and antioxidative activity of the target compounds. Studies have shown that successful use of the cyclodextrin requires good planning and understanding of the chemical composition of the food product.
-
Key words:
- Cyclodextrin /
- Encapsulation /
- Color /
- Flavor