[1]
|
Marcone MF. 2005. Characterization of the edible bird's nest the "Caviar of the East". Food Research International 38:1125−34 doi: 10.1016/j.foodres.2005.02.008
CrossRef Google Scholar
|
[2]
|
Lee TH, Wani WA, Koay YS, Kavita S, Tan ETT, et al. 2017. Recent advances in the identification and authentication methods of edible bird's nest. Food Research International 100:14−27 doi: 10.1016/j.foodres.2017.07.036
CrossRef Google Scholar
|
[3]
|
Ling AJW, Chang LS, Babji AS, Latip J, Koketsu M, et al. 2022. Review of sialic acid's biochemistry, sources, extraction and functions with special reference to edible bird's nest. Food Chemistry 367:130755 doi: 10.1016/j.foodchem.2021.130755
CrossRef Google Scholar
|
[4]
|
Chok KC, Ng MG, Ng KY, Koh RY, Tiong YL, et al. 2021. Edible Bird's Nest: Recent Updates and Industry Insights Based On Laboratory Findings. Frontiers in Pharmacology 12:746656 doi: 10.3389/fphar.2021.746656
CrossRef Google Scholar
|
[5]
|
Looi QH, Amin H, Aini I, Zuki M, Omar AR. 2017. De novo transcriptome analysis shows differential expression of genes in salivary glands of edible bird's nest producing swiftlets. BMC Genomics 18:504 doi: 10.1186/s12864-017-3861-9
CrossRef Google Scholar
|
[6]
|
The Galaxy Community. 2022. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Research 50:W345−W351 doi: 10.1093/nar/gkac247
CrossRef Google Scholar
|
[7]
|
Ladunga I. 2018. Installing, maintaining, and using a local copy of BLAST for compute cluster or workstation use. Current Protocols in Bioinformatics 63:e54 doi: 10.1002/cpbi.54
CrossRef Google Scholar
|
[8]
|
Guo BS, Zheng F, Crouch L, Cai ZP, Wang M, et al. 2018. Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila. Glycoconjugate Journal 35:255−63 doi: 10.1007/s10719-018-9824-9
CrossRef Google Scholar
|
[9]
|
Laurent N, Haddoub R, Voglmeir J, Flitsch SL. 2012. MALDI-ToF MS Analysis of Glycosyltransferase Activities on Gold Surface Arrays. In Carbohydrate Microarrays: Methods and Protocols, ed. Chevolot Y. Totowa, NJ: Humana Press. pp. 269−84. https://doi.org/10.1007/978-1-61779-373-8_19
|
[10]
|
Voglmeir J, Laurent N, Flitsch SL, Oelgeschläger M, Wilson IBH. 2015. Biological and biochemical properties of two Xenopus laevis N-acetylgalactosaminyltransferases with contrasting roles in embryogenesis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 180:40−47 doi: 10.1016/j.cbpb.2014.10.003
CrossRef Google Scholar
|
[11]
|
Choi J, Wagner LJS, Timmermans SBPE, Malaker SA, Schumann B, et al. 2019. Engineering orthogonal polypeptide GalNAc-transferase and UDP-sugar pairs. Journal of the American Chemical Society 141:13442−53 doi: 10.1021/jacs.9b04695
CrossRef Google Scholar
|
[12]
|
de Las Rivas M, Coelho H, Diniz A, Lira-Navarrete E, Compañón I, et al. 2018. Structural analysis of a GalNAc-T2 mutant reveals an induced-fit catalytic mechanism for GalNAc-Ts. Chemistry 24:8382−92 doi: 10.1002/chem.201800701
CrossRef Google Scholar
|
[13]
|
Laurent N, Haddoub R, Voglmeir J, Wong SCC, Gaskell SJ, et al. 2008. SPOT synthesis of peptide arrays on self-assembled monolayers and their evaluation as enzyme substrates. ChemBioChem 9:2592−96 doi: 10.1002/cbic.200800481
CrossRef Google Scholar
|
[14]
|
Laurent N, Voglmeir J, Wright A, Blackburn J, Pham NT, et al. 2008. Enzymatic glycosylation of peptide arrays on gold surfaces. ChemBioChem 9:883−87 doi: 10.1002/cbic.200700692
CrossRef Google Scholar
|
[15]
|
Sangadala S, Swain JB, McNear A, Mendicino J. 2004. Cloning, expression and properties of porcine trachea UDP-GalNAc: polypeptide N-acetylgalactosaminyl transferase. Molecular and Cellular Biochemistry 266:117−26 doi: 10.1023/B:MCBI.0000049148.73497.01
CrossRef Google Scholar
|
[16]
|
Du T, Buenbrazo N, Kell L, Rahmani S, Sim L, et al. 2019. A bacterial expression platform for production of therapeutic proteins containing human - like O-linked glycans. Cell Chemical Biology 26:203−212.E5 doi: 10.1016/j.chembiol.2018.10.017
CrossRef Google Scholar
|
[17]
|
Lauber J, Handrick R, Leptihn S, Dürre P, Gaisser S. 2015. Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli. Microbial Cell Factories 14:3 doi: 10.1186/s12934-014-0186-0
CrossRef Google Scholar
|
[18]
|
Liang T, Xu Z, Jia W, Zhang H, Yang F, et al. 2020. A simple bacterial expression system for human ppGalNAc-T and used for the synthesis of O-GalNAc glycosylated interleukin 2. Biochemical and Biophysical Research Communications 529:57−63 doi: 10.1016/j.bbrc.2020.05.209
CrossRef Google Scholar
|
[19]
|
Ju T, Aryal RP, Kudelka MR, Wang Y, Cummings RD. 2014. The Cosmc connection to the Tn antigen in cancer. Cancer Biomarkers: Section A of Disease Markers 14:63−81 doi: 10.3233/CBM-130375
CrossRef Google Scholar
|
[20]
|
Itoh K, Akimoto Y, Fuwa TJ, Sato C, Komatsu A, et al. 2016. Mucin-type core 1 glycans regulate the localization of neuromuscular junctions and establishment of muscle cell architecture in Drosophila. Developmental Biology 412:114−27 doi: 10.1016/j.ydbio.2016.01.032
CrossRef Google Scholar
|
[21]
|
Thompson N, Wakarchuk W. 2022. O-glycosylation and its role in therapeutic proteins. Bioscience Reports 42:BSR20220094 doi: 10.1042/BSR20220094
CrossRef Google Scholar
|
[22]
|
Takeuchi M, Yoshikawa M, Sasaki R, Chiba H. 1985. Purification and characterization of UDP-N-acetylgalactosamine: κ-Casein polypeptide N-Acetylgalactosaminyltransferase from mammary gland of lactating cow. Agricultural and Biological Chemistry 49:1059−69 doi: 10.1080/00021369.1985.10866844
CrossRef Google Scholar
|
[23]
|
Wang Y, Abernethy JL, Eckhardt AE, Hill RL. 1992. Purification and characterization of a UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase specific for glycosylation of threonine residues. Journal of Biological Chemistry 267:12709−16 doi: 10.1016/S0021-9258(18)42334-4
CrossRef Google Scholar
|
[24]
|
Hagen FK, Nehrke K. 1998. cDNA cloning and expression of a family of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase sequence homologs from Caenorhabditis elegans. Journal of Biological Chemistry 273:8268−77 doi: 10.1074/jbc.273.14.8268
CrossRef Google Scholar
|
[25]
|
Nakamura N, Katano K, Toba S, Kurosaka A. 2004. Characterization of a novel polypeptide N-acetylgalactosaminyltransferase (dGalNAc-T3) from Drosophila. Biological & Pharmaceutical Bulletin 27:1509−14 doi: 10.1248/bpb.27.1509
CrossRef Google Scholar
|
[26]
|
Both P, Green AP, Gray CJ, Šardzík R, Voglmeir J, et al. 2014. Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nature Chemistry 6:65−74 doi: 10.1038/nchem.1817
CrossRef Google Scholar
|
[27]
|
Elhammer A, Kornfeld S. 1986. Purification and characterization of UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferase from bovine colostrum and murine lymphoma BW5147 cells. Journal of Biological Chemistry 261:5249−55 doi: 10.1016/S0021-9258(19)57206-4
CrossRef Google Scholar
|