[1]
|
He J, Evans NM, Liu H, Shao S. 2020. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety 19(5):2639−56 doi: 10.1111/1541-4337.12610
CrossRef Google Scholar
|
[2]
|
Wang Y, Lyu B, Fu H, Li J, Ji L, et al. 2023. The development process of plant-based meat alternatives: Raw material formulations and processing strategies. Food Research International 167:112689 doi: 10.1016/j.foodres.2023.112689
CrossRef Google Scholar
|
[3]
|
Kyriakopoulou K, Keppler JK, van der Goot AJ. 2021. Functionality of ingredients and additives in plant-based meat analogues. Foods 10(3):600 doi: 10.3390/foods10030600
CrossRef Google Scholar
|
[4]
|
Joseph P, Searing A, Watson C, McKeague J. 2020. Alternative proteins: market research on consumer trends and emerging landscape. Meat and Muscle Biology 4(2):1−11 doi: 10.22175/mmb.11225
CrossRef Google Scholar
|
[5]
|
McClements DJ. 2023. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Comprehensive Reviews in Food Science and Food Safety 22(5):3531−59 doi: 10.1111/1541-4337.13204
CrossRef Google Scholar
|
[6]
|
Shan S, Teng C, Chen D, Campanella O. 2023. Insights into protein digestion in plant-based meat analogs. Current Opinion in Food Science 52:101043 doi: 10.1016/j.cofs.2023.101043
CrossRef Google Scholar
|
[7]
|
Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. 2021. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research 133:285−96 doi: 10.1016/j.jbusres.2021.04.070
CrossRef Google Scholar
|
[8]
|
Liu Y, Xu Y, Cheng X, Lin Y, Jiang S, et al. 2022. Research trends and most influential clinical studies on anti-PD1/PDL1 immunotherapy for cancers: A bibliometric analysis. Frontiers in Immunology 13:862084 doi: 10.3389/fimmu.2022.862084
CrossRef Google Scholar
|
[9]
|
Liu Y, Li J, Cheng X, Zhang X. 2021. Bibliometric analysis of the top-cited publications and research trends for stereotactic body radiotherapy. Frontiers in Oncology 11:795568 doi: 10.3389/fonc.2021.795568
CrossRef Google Scholar
|
[10]
|
Kumar R, Rani S, Awadh MA. 2022. Exploring the application sphere of the Internet of things in industry 4.0: A review, bibliometric and content analysis. Sensors 22:4276 doi: 10.3390/s22114276
CrossRef Google Scholar
|
[11]
|
Kumar R, Goel P. 2022. Exploring the domain of interpretive structural modelling (ISM) for sustainable future panorama: A bibliometric and content analysis. Archives of Computational Methods in Engineering 29:2781−810 doi: 10.1007/s11831-021-09675-7
CrossRef Google Scholar
|
[12]
|
Liu Y, Jiang S, Lin Y, Yu H, Yu L, et al. 2022. Research landscape and trends of lung cancer radiotherapy a bibliometric analysis. Frontiers in Oncology 12:1066557 doi: 10.3389/fonc.2022.1066557
CrossRef Google Scholar
|
[13]
|
Ni Q, Amalfitano N, Biasioli F, Gallo L, Tagliapietra F, et al. 2022. Bibliometric review on the volatile organic compounds in meat. Foods 11(22):3574 doi: 10.3390/foods11223574
CrossRef Google Scholar
|
[14]
|
Moreira MNB, da Veiga CP, da Veiga CRP, Reis GG, Pascuci LM. 2022. Reducing meat consumption: Insights from a bibliometric analysis and future scopes. Future Foods 5:100120 doi: 10.1016/j.fufo.2022.100120
CrossRef Google Scholar
|
[15]
|
Wild F, Czerny M, Janssen AM, Kole A, Zunabovic M, et al. 2014. The evolution of a plant-based alternative to meat: From niche markets to widely accepted meat alternatives. Agro Food Industry Hi Tech 25:45−49
Google Scholar
|
[16]
|
Dekkers BL, Boom RM, van der Goot AJ. 2018. Structuring processes for meat analogues. Trends in Food Science & Technology 81:25−36 doi: 10.1016/j.jpgs.2018.08.011
CrossRef Google Scholar
|
[17]
|
Wang Y, Cai W, Li L, Gao Y, Lai KH. 2023. Recent advances in the processing and manufacturing of plant-based meat. Journal of Agricultural and Food Chemistry 71(3):1276−90 doi: 10.1021/acs.jafc.2c07247
CrossRef Google Scholar
|
[18]
|
Godfray HCJ, Aveyard P, Garnett T, Hall JW, Key TJ, et al. 2018. Meat consumption, health, and the environment. Science 361:eaam5324 doi: 10.1126/science.aam5324
CrossRef Google Scholar
|
[19]
|
Daszkiewicz T. 2022. Food production in the context of global developmental challenges. Agriculture 12(6):832 doi: 10.3390/agriculture12060832
CrossRef Google Scholar
|
[20]
|
Pimentel D, Pimentel M. 2003. Sustainability of meat-based and plant-based diets and the environment. The American Journal of Clinical Nutrition 78:660S−663S doi: 10.1093/ajcn/78.3.660S
CrossRef Google Scholar
|
[21]
|
Georgiadis NJ, Olwero JgN, Ojwang' G, Romañach SS. 2007. Savanna herbivore dynamics in a livestock-dominated landscape: I. Dependence on land use, rainfall, density, and time. Biological Conservation 137(3):461−72 doi: 10.1016/j.biocon.2007.03.005
CrossRef Google Scholar
|
[22]
|
Farouk MM, Pufpaff KM, Amir M. 2016. Industrial halal meat production and animal welfare: A review. Meat Science 120:60−70 doi: 10.1016/j.meatsci.2016.04.023
CrossRef Google Scholar
|
[23]
|
Micha R, Wallace SK, Mozaffarian D. 2010. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: A systematic review and meta-analysis. Circulation 121(21):2271−83 doi: 10.1161/CIRCULATIONAHA.109.924977
CrossRef Google Scholar
|
[24]
|
Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, et al. 2012. Red meat consumption and mortality: results from 2 prospective cohort studies. Archives of Internal Medicine 172(7):555−63 doi: 10.1001/archinternmed.2011.2287
CrossRef Google Scholar
|
[25]
|
Bernstein AM, Sun Q, Hu FB, Stampfer MJ, Manson JE, et al. 2010. Major dietary protein sources and risk of coronary heart disease in women. Circulation 122(9):876−83 doi: 10.1161/CIRCULATIONAHA.109.915165
CrossRef Google Scholar
|
[26]
|
Melina V, Craig W, Levin S. 2016. Position of the academy of nutrition and dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics 116(12):1970−80 doi: 10.1016/j.jand.2016.09.025
CrossRef Google Scholar
|
[27]
|
Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, et al. 2016. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: Results from three prospective cohort studies. PLOS Medicine 13(6):e1002039 doi: 10.1371/journal.pmed.1002039
CrossRef Google Scholar
|
[28]
|
Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. 2017. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition 57(17):3640−49 doi: 10.1080/10408398.2016.1138447
CrossRef Google Scholar
|
[29]
|
Tonstad S, Butler T, Yan R, Fraser GE. 2009. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32(5):791−96 doi: 10.2337/dc08-1886
CrossRef Google Scholar
|
[30]
|
Flint M, Bowles S, Lynn A, Paxman JR. 2023. Novel plant-based meat alternatives: future opportunities and health considerations. Proceedings of the Nutrition Society 82(3):370−85 doi: 10.1017/S0029665123000034
CrossRef Google Scholar
|
[31]
|
Chantanuson R, Nagamine S, Kobayashi T, Nakagawa K. 2022. Preparation of soy protein-based food gels and control of fibrous structure and rheological property by freezing. Food Structure 32:100258 doi: 10.1016/j.foostr.2022.100258
CrossRef Google Scholar
|
[32]
|
Zhang X, Zhao Y, Zhao X, Sun P, Zhao D, et al. 2023. The texture of plant protein-based meat analogs by high moisture extrusion: A review. Journal of Texture Studies 54(3):351−64 doi: 10.1111/jtxs.12697
CrossRef Google Scholar
|
[33]
|
Kaczmarska K, Taylor M, Piyasiri U, Frank D. 2021. Flavor and metabolite profiles of meat, meat substitutes, and traditional plant-based high-protein food products available in Australia. Foods 10(4):801 doi: 10.3390/foods10040801
CrossRef Google Scholar
|
[34]
|
Wang Y, Tuccillo F, Lampi AM, Knaapila A, Pulkkinen M, et al. 2022. Flavor challenges in extruded plant-based meat alternatives: A review. Comprehensive Reviews in Food Science and Food Safety 21(3):2898−929 doi: 10.1111/1541-4337.12964
CrossRef Google Scholar
|
[35]
|
Hu FB, Otis BO, McCarthy G. 2019. Can plant-based meat alternatives be part of a healthy and sustainable diet? Journal of the American Medical Association (JAMA) 322(16):1547−48 doi: 10.1001/jama.2019.13187
CrossRef Google Scholar
|
[36]
|
Tso R, Forde CG. 2021. Unintended consequences: nutritional impact and potential pitfalls of switching from animal-to plant-based foods. Nutrients 13(8):2527 doi: 10.3390/nu13082527
CrossRef Google Scholar
|
[37]
|
Sayd T, Chambon C, Santé-Lhoutellier V. 2016. Quantification of peptides released during in vitro digestion of cooked meat. Food Chemistry 197:1311−23 doi: 10.1016/j.foodchem.2015.11.020
CrossRef Google Scholar
|
[38]
|
Xie Y, Wang C, Zhao D, Zhou G, Li, C. 2020. Processing method altered mouse intestinal morphology and microbial composition by affecting digestion of meat proteins. Frontiers in Microbiology 11:511 doi: 10.3389/fmicb.2020.00511
CrossRef Google Scholar
|
[39]
|
Drulyte D, Orlien V. 2019. The effect of processing on digestion of legume proteins. Foods 8(6):224 doi: 10.3390/foods8060224
CrossRef Google Scholar
|
[40]
|
Xie Y, Cai L, Zhao D, Liu H, Xu X, et al. 2022. Real meat and plant-based meat analogues have different in vitro protein digestibility properties. Food Chemistry 387:132917 doi: 10.1016/j.foodchem.2022.132917
CrossRef Google Scholar
|
[41]
|
Xie Y, Cai L, Huang Z, Shan K, Xu X, et al. 2022. Plant-based meat analogues weaken gastrointestinal digestive function and show less digestibility than real meat in mice. Journal of Agricultural and Food Chemistry 70(39):12442−55 doi: 10.1021/acs.jafc.2c04246
CrossRef Google Scholar
|
[42]
|
Costa-Catala J, Toro-Funes N, Comas-Basté O, Hernández-Macias S, Sánchez-Pérez S, et al. 2023. Comparative assessment of the nutritional profile of meat products and their plant-based analogues. Nutrients 15(12):2807 doi: 10.3390/nu15122807
CrossRef Google Scholar
|
[43]
|
Cole E, Goeler-Slough N, Cox A, Nolden A. 2022. Examination of the nutritional composition of alternative beef burgers available in the United States. International Journal of Food Sciences and Nutrition 73(4):425−32 doi: 10.1080/09637486.2021.2010035
CrossRef Google Scholar
|
[44]
|
Curtain F, Grafenauer S. 2019. Plant-based meat substitutes in the flexitarian age: an audit of products on supermarket shelves. Nutrients 11(11):2603 doi: 10.3390/nu11112603
CrossRef Google Scholar
|
[45]
|
Yang Y, Zheng Y, Ma W, Zhang Y, Sun C, et al. 2023. Meat and plant-based meat analogs: Nutritional profile and in vitro digestion comparison. Food Hydrocolloids 143:108886 doi: 10.1016/j.foodhyd.2023.108886
CrossRef Google Scholar
|
[46]
|
Bohrer BM. 2019. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness 8(4):320−29 doi: 10.1016/j.fshw.2019.11.006
CrossRef Google Scholar
|
[47]
|
Rizzolo-Brime L, Orta-Ramirez A, Puyol Martin Y, Jakszyn P. 2023. Nutritional assessment of plant-based meat alternatives: A comparison of nutritional information of plant-based meat alternatives in Spanish Supermarkets. Nutrients 15(6):1325 doi: 10.3390/nu15061325
CrossRef Google Scholar
|
[48]
|
Poti JM, Braga B, Qin B. 2017. Ultra-processed food intake and obesity: What really matters for health-processing or nutrient content? Current Obesity Reports 6:420−31 doi: 10.1007/s13679-017-0285-4
CrossRef Google Scholar
|
[49]
|
Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Méjean C, et al. 2019. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 365:l1451 doi: 10.1136/bmj.l1451
CrossRef Google Scholar
|
[50]
|
Andreani G, Sogari G, Marti A, Froldi F, Dagevos H, et al. 2023. Plant-based meat alternatives: Technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients 15(2):452 doi: 10.3390/nu15020452
CrossRef Google Scholar
|
[51]
|
Xie Y, Cai L, Ding M, Shan K, Zhao D, et al. 2023. Plant-based meat analogues enhance the gastrointestinal motility function and appetite of mice by specific volatile compounds and peptides. Food Research International 174:113551 doi: 10.1016/j.foodres.2023.113551
CrossRef Google Scholar
|
[52]
|
Xie Y, Cai L, Huang Z, Shan K, Xu X, et al. 2024. Plant-based meat analogues aggravated lipid accumulation by regulating lipid metabolism homeostasis in mice. Food Science and Human Wellness 13:946−60 doi: 10.26599/FSHW.2022.9250081
CrossRef Google Scholar
|
[53]
|
Augustin Mihalache O, Carbonell-Rozas L, Cutroneo S, Dall'Asta C. 2023. Multi-mycotoxin determination in plant-based meat alternatives and exposure assessment. Food Research International 168:112766 doi: 10.1016/j.foodres.2023.112766
CrossRef Google Scholar
|
[54]
|
Augustin Mihalache O, Dellafiora L, Dall'Asta C. 2022. A systematic review of natural toxins occurrence in plant commodities used for plant-based meat alternatives production. Food Research International 158:111490 doi: 10.1016/j.foodres.2022.111490
CrossRef Google Scholar
|
[55]
|
Knaapila A, Michel F, Jouppila K, Sontag-Strohm T, Piironen V. 2022. Millennials' consumption of and attitudes toward meat and plant-based meat alternatives by consumer segment in Finland. Foods 11(3):456 doi: 10.3390/foods11030456
CrossRef Google Scholar
|
[56]
|
Safdar B, Zhou H, Li H, Cao J, Zhang T, et al. 2022. Prospects for plant-based meat: current standing, consumer perceptions, and shifting trends. Foods 11(23):3770 doi: 10.3390/foods11233770
CrossRef Google Scholar
|
[57]
|
Hoek AC, Luning PA, Weijzen P, Engels W, Kok FJ, et al. 2011. Replacement of meat by meat substitutes: A survey on person- and product-related factors in consumer acceptance. Appetite 56(3):662−73 doi: 10.1016/j.appet.2011.02.001
CrossRef Google Scholar
|
[58]
|
Boukid F, Hassoun A, Zouari A, Tülbek MÇ, Mefleh M, et al. 2023. Fermentation for designing innovative plant-based meat and dairy alternatives. Foods 12(5):1005 doi: 10.3390/foods12051005
CrossRef Google Scholar
|
[59]
|
Ou M, Lou J, Lao L, Guo Y, Pan D, et al. 2023. Plant-based meat analogue of soy proteins by the multi-strain solid-state mixing fermentation. Food Chemistry 414:135671 doi: 10.1016/j.foodchem.2023.135671
CrossRef Google Scholar
|
[60]
|
Kircali Ata S, Shi JK, Yao X, Hua XY, Haldar S, et al. 2023. Predicting the textural properties of plant-based meat analogs with machine learning. Foods 12(2):344 doi: 10.3390/foods12020344
CrossRef Google Scholar
|
[61]
|
Bouvard V, Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, et al. 2015. Carcinogenicity of consumption of red and processed meat. Lancet Oncology 16(16):1599−600 doi: 10.1016/S1470-2045(15)00444-1
CrossRef Google Scholar
|
[62]
|
Zhao S, Wang L, Hu W, Zheng Y. 2023. Meet the meatless: Demand for new generation plant-based meat alternatives. Applied Economic Perspectives and Policy 45(1):4−21 doi: 10.1002/aepp.13232
CrossRef Google Scholar
|
[63]
|
Vural Y, Ferriday D, Rogers PJ. 2023. Consumer attitudes towards alternative meat products: Expectations about taste and the role of disgust. Appetite 181:106394 doi: 10.1016/j.appet.2022.106394
CrossRef Google Scholar
|
[64]
|
Lai Y, Suo S, Wang R, Kong X, Hu Y, et al. 2018. Trends involving monoclonal antibody (mAb) research and commercialization: A scientometric analysis of IMS lifecycle R&D focus database (1980−2016). Human Vaccines & Immunotherapeutics 14:847−55 doi: 10.1080/21645515.2017.1420445
CrossRef Google Scholar
|
[65]
|
Deng Z, Wang H, Chen Z, Wang T. 2020. Bibliometric analysis of dendritic epidermal T Cell (DETC) research from 1983 to 2019. Frontiers in Immunology 11:259 doi: 10.3389/fimmu.2020.00259
CrossRef Google Scholar
|
[66]
|
Xie Y, Wang C, Zhao D, Zhou C, Li C. 2020. Long-term intake of pork meat proteins altered the composition of gut microbiota and host-derived proteins in the gut contents of mice. Molecular Nutrition & Food Research 64(17):e2000291 doi: 10.1002/mnfr.202000291
CrossRef Google Scholar
|
[67]
|
Xie Y, Zhou G, Wang C, Xu X, Li C. 2019. Specific microbiota dynamically regulate the bidirectional gut-brain axis communications in mice fed meat protein diets. Journal of Agricultural and Food Chemistry 67(3):1003−17 doi: 10.1021/acs.jafc.8b05654
CrossRef Google Scholar
|
[68]
|
Xie Y, Wang C, Zhao D, Wang C, Li C. 2020. Dietary proteins regulate serotonin biosynthesis and catabolism by specific gut microbes. Journal of Agricultural and Food Chemistry 68(21):5880−90 doi: 10.1021/acs.jafc.0c00832
CrossRef Google Scholar
|
[69]
|
Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, et al. 2023. Gut-liver axis: barriers and functional circuits. Nature Reviews Gastroenterology & Hepatology 20:447−61 doi: 10.1038/s41575-023-00771-6
CrossRef Google Scholar
|