[1]
|
Ahmad A, Rehman MU, Wali AF, El-Serehy HA, Al-Misned FA, et al. 2020. Box–Behnken response surface design of polysaccharide extraction from Rhododendron arboreum and the evaluation of its antioxidant potential. Molecules 25:3835 doi: 10.3390/molecules25173835
CrossRef Google Scholar
|
[2]
|
Li W, Wang Y, Wei H, Zhang Y, Guo Z, et al. 2020. Structural characterization of Lanzhou lily (Lilium davidii var. unicolor) polysaccharides and determination of their associated antioxidant activity. Journal of the Science of Food and Agriculture 100:5603−16 doi: 10.1002/jsfa.10613
CrossRef Google Scholar
|
[3]
|
Zhang X, Zhang Q, Xue H, Zhang J, Wang X. 2022. A green and highly efficient method of extracting polyphenols from Lilium davidii var. unicolor Salisb using deep eutectic solvents. Chemical Engineering Communications 209:271−80 doi: 10.1080/00986445.2020.1864625
CrossRef Google Scholar
|
[4]
|
Huang D, Li W, Dawuda MM, Huo J, Li C, et al. 2021. Hydrogen sulfide reduced colour change in Lanzhou lily-bulb scales. Postharvest Biology and Technology 176:111520 doi: 10.1016/j.postharvbio.2021.111520
CrossRef Google Scholar
|
[5]
|
Xie M, Tan H, Zhao G. 2022. A clean and sustainable strategy to produce bio-lubricant with high-bearing and good anti-oxidation ability from Lanzhou lily. Journal of Cleaner Production 371:133333 doi: 10.1016/j.jclepro.2022.133333
CrossRef Google Scholar
|
[6]
|
de Klerk GJ. 2012. Micropropagation of bulbous crops: technology and present state. Floriculture and Ornamental Biotechnology 6:1−8
Google Scholar
|
[7]
|
Lazare S, Bechar D, Fernie AR, Brotman Y, Zaccai M. 2019. The proof is in the bulb: glycerol influences key stages of lily development. The Plant Journal 97:321−40 doi: 10.1111/tpj.14122
CrossRef Google Scholar
|
[8]
|
MukerjeaR, Yu L, Robyt JF. 2002. Starch biosynthesis: mechanism for the elongation of starch chains. Carbohydrate Research 337:1015−22 doi: 10.1016/S0008-6215(02)00067-8
CrossRef Google Scholar
|
[9]
|
Islam MS, Roni MZK, Shimasaki K. 2017. Factors affecting bulblet growth of Lilium sp. in vitro and in vivo. Plant Omics Journal 10:263−68 doi: 10.21475/poj.10.05.17.pne872
CrossRef Google Scholar
|
[10]
|
Yang P, Xu L, Xu H, Tang Y, He G, et al. 2017. Histological and transcriptomic analysis during bulbil formation in Lilium lancifolium. Frontiers in Plant Science 8:1508 doi: 10.3389/fpls.2017.01508
CrossRef Google Scholar
|
[11]
|
Fang S, Yang C, Ali MM, Lin M, Tian S, et al. 2022. Transcriptome analysis reveals the molecular regularity mechanism underlying stem bulblet formation in Oriental lily 'Siberia'; functional characterization of the LoLOB18 gene. International Journal of Molecular Sciences 23:15246 doi: 10.3390/ijms232315246
CrossRef Google Scholar
|
[12]
|
Li X, Wang C, Cheng J, Zhang J, da Silva JAT, et al. 2014. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor. BMC Plant Biology 14:358 doi: 10.1186/s12870-014-0358-4
CrossRef Google Scholar
|
[13]
|
Hegde PS, White IR and Debouck C. 2003. Interplay of transcriptomics and proteomics. Current Opinion in Biotechnology 14:647−51 doi: 10.1016/j.copbio.2003.10.006
CrossRef Google Scholar
|
[14]
|
Diz AP, Martínez-Fernández M and Rolán-Alvarez E. 2012. Proteomics in evolutionary ecology: linking the genotype with the phenotype. Molecular Ecology 21:1060−80 doi: 10.1111/j.1365-294X.2011.05426.x
CrossRef Google Scholar
|
[15]
|
Ali B, Gill RA, Yang S, Gill MB, Farooq MA, et al. 2015. Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS One 10:e0123328 doi: 10.1371/journal.pone.0123328
CrossRef Google Scholar
|
[16]
|
Dai H, Wei S, Noori A. 2020. The mechanism of chelator improved the tolerance and accumulation of poplar to Cd explored through differential expression protein based on iTRAQ. Journal of Hazardous Materials 393:122370 doi: 10.1016/j.jhazmat.2020.122370
CrossRef Google Scholar
|
[17]
|
Ma Q, Shi C, Su C, Liu Y. 2020. Complementary analyses of the transcriptome and iTRAQ proteome revealed mechanism of ethylene dependent salt response in bread wheat (Triticum aestivum L.). Food Chemistry 325:126866 doi: 10.1016/j.foodchem.2020.126866
CrossRef Google Scholar
|
[18]
|
Wu Y, Pi J, Zhang H, Xiao H, Pan A, et al. 2020. Integrating the transcriptome and proteome to identify important functional genes for laying hens with hard- or weak-shelled eggs. Research Square doi: 10.21203/rs.3.rs-124584/v1
CrossRef Google Scholar
|
[19]
|
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x
CrossRef Google Scholar
|
[20]
|
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research 36:D480−D484 doi: 10.1093/nar/gkm882
CrossRef Google Scholar
|
[21]
|
Wang X, Chang L, Tong Z, Wang D, Yin Q, et al. 2016. Proteomics profiling reveals carbohydrate metabolic enzymes and 14-3-3 proteins play important roles for starch accumulation during Cassava root tuberization. Scientific Reports 6:19643 doi: 10.1038/srep19643
CrossRef Google Scholar
|
[22]
|
Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, et al. 2008. Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). Journal of Proteome Research 7:3803−17 doi: 10.1021/pr8000755
CrossRef Google Scholar
|
[23]
|
Chen S, Chen J, Hou F, Feng Y, Zhang R. 2018. iTRAQ-based quantitative proteomic analysis reveals the lateral meristem developmental mechanism for branched spike development in tetraploid wheat (Triticum turgidum L.). BMC Genomics 19:228 doi: 10.1186/s12864-018-4607-z
CrossRef Google Scholar
|
[24]
|
Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, et al. 2022. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics 23:473 doi: 10.1186/s12864-022-08670-x
CrossRef Google Scholar
|
[25]
|
Sun Q, Zhang B, Yang C, Wang W, Xiang L, et al. 2022. Jasmonic acid biosynthetic genes TgLOX4 and TgLOX5 are involved in daughter bulb development in tulip (Tulipa gesneriana). Horticulture Research 9:uhac006 doi: 10.1093/hr/uhac006
CrossRef Google Scholar
|
[26]
|
Li W, Huang D, Wang B, Hou X, Zhang R, et al. 2022. Changes of starch and sucrose content and related gene expression during the growth and development of Lanzhou lily bulb. PLoS One 17:e0262506 doi: 10.1371/journal.pone.0262506
CrossRef Google Scholar
|
[27]
|
Mo J, Qu Y, He G, Yang P, Wang L, et al. 2023. Effect of exogenous 6-BA induced Lilium lancifolium bulblets formation in aerial cultivation. Scientia Horticulturae 309:111644 doi: 10.1016/j.scienta.2022.111644
CrossRef Google Scholar
|
[28]
|
He G, Cao Y, Wang J, Song M, Bi M, et al. 2022. WUSCHEL-related homeobox genes cooperate with cytokinin to promote bulbil formation in Lilium lancifolium. Plant Physiology 190:387−402 doi: 10.1093/plphys/kiac259
CrossRef Google Scholar
|
[29]
|
Nahirñak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, et al. 2012. Potato Snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. Plant Physiology 158:252−63 doi: 10.1104/pp.111.186544
CrossRef Google Scholar
|
[30]
|
Ben-issan G, Lee JY, Borohov A, Weiss D. 2004. GIP, a Petunia hybrida GA-duced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. The Plant Journal 37:229−38 doi: 10.1046/j.1365-313X.2003.01950.x
CrossRef Google Scholar
|
[31]
|
Qu J, Kang SG, Hah C, Jang JC. 2016. Molecular and cellular characterization of GA-stimulated transcripts GASA4 and GASA6 in Arabidopsis thaliana. Plant Science 246:1−10 doi: 10.1016/j.plantsci.2016.01.009
CrossRef Google Scholar
|
[32]
|
Roxrud I, Lid SE, Fletcher JC, Schmidt EDL, Opsahl-Sorteberg HG. 2007. GASA4, One of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant and Cell Physiology 48:471−83 doi: 10.1093/pcp/pcm016
CrossRef Google Scholar
|
[33]
|
Zimmermann R, Sakai H, Hochholdinger F. 2010. The Gibberellic Acid Stimulated - Like gene family in maize and its role in lateral root development. Plant Physiology 152:356−65 doi: 10.1104/pp.109.149054
CrossRef Google Scholar
|
[34]
|
Moyano-Cañete E, Bellido ML, García-Caparrós N, Medina-Puche L, Amil-Ruiz F, et al. 2013. FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant and Cell Physiology 54:218−63 doi: 10.1093/pcp/pcs167
CrossRef Google Scholar
|
[35]
|
Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, et al. 2009. Evidence for a role of gibberellins in dalicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology 150:1335−44 doi: 10.1104/pp.109.139352
CrossRef Google Scholar
|
[36]
|
Ko CB, Woo YM, Lee DJ, Lee MC , Kim CS. 2007. Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiology and Biochemistry 45:722−28 doi: 10.1016/j.plaphy.2007.07.010
CrossRef Google Scholar
|
[37]
|
Sun S, Wang H, Yu H, Zhong C, Zhang X, et al. 2013. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. Journal of Experimental Botany 64:1637−47 doi: 10.1093/jxb/ert021
CrossRef Google Scholar
|
[38]
|
Zhang S, Wang X. 2008. Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis. Chinese Science Bulletin 53:3839−46 doi: 10.1007/s11434-008-0525-9
CrossRef Google Scholar
|
[39]
|
Wang L, Wang Z, Xu Y, Joo SH, Kim SK, et al. 2009. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. The Plant Journal 57:498−10 doi: 10.1111/j.1365-313X.2008.03707.x
CrossRef Google Scholar
|
[40]
|
Wang H, Wei T, Wang X, Zhang L, Yang M, et al. 2018. Transcriptome analyses from mutant Salvia miltiorrhiza reveals important roles for SmGASA4 during plant development. International Journal of Molecular Sciences 19:2088 doi: 10.3390/ijms19072088
CrossRef Google Scholar
|
[41]
|
Li Z, Gao J, Wang G, Wang S, Chen K, et al. 2021. Genome-wide identification and characterization of GASA gene family in Nicotiana tabacum. Frontiers in Genetics 12:768942 doi: 10.3389/fgene.2021.768942
CrossRef Google Scholar
|