[1]
|
Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333:616−20 doi: 10.1126/science.1204531
CrossRef Google Scholar
|
[2]
|
Zhang J, Li X, Lin H, Chong K. 2019. Crop improvement through temperature resilience. Annual Review of Plant Biology 70:753−80 doi: 10.1146/annurev-arplant-050718-100016
CrossRef Google Scholar
|
[3]
|
Zhou Y, Xu F, Shao Y, He J. 2022. Regulatory mechanisms of heat stress response and thermomorphogenesis in plants. Plants 11:3410 doi: 10.3390/plants11243410
CrossRef Google Scholar
|
[4]
|
Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in Biochemical Sciences 37:118−25 doi: 10.1016/j.tibs.2011.11.007
CrossRef Google Scholar
|
[5]
|
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63:635−74 doi: 10.1007/s11427-020-1683-x
CrossRef Google Scholar
|
[6]
|
Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:104−19 doi: 10.1016/j.bbagrm.2011.10.002
CrossRef Google Scholar
|
[7]
|
Scharf KD, Heider H, Höhfeld I, Lyck R, Schmidt E, et al. 1998. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Molecular and Cellular Biology 18:2240−51 doi: 10.1128/MCB.18.4.2240
CrossRef Google Scholar
|
[8]
|
Li C, Chen Q, Gao X, Qi B, Chen N, et al. 2005. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Science in China Series C: Life Sciences 48:540−50 doi: 10.1360/062005-119
CrossRef Google Scholar
|
[9]
|
Charng Y, Liu H, Liu N, Chi W, Wang C, et al. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143:251−62 doi: 10.1104/pp.106.091322
CrossRef Google Scholar
|
[10]
|
Banti V, Mafessoni F, Loreti E, Alpi A, Perata P. 2010. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiology 152:1471−83 doi: 10.1104/pp.109.149815
CrossRef Google Scholar
|
[11]
|
Chan-Schaminet KY, Baniwal SK, Bublak D, Nover L, Scharf KD. 2009. Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. Journal of Biological Chemistry 284:20848−57 doi: 10.1074/jbc.M109.007336
CrossRef Google Scholar
|
[12]
|
Gong B, Yi J, Wu J, Sui J, Khan MA, et al. 2014. LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Plant Cell Reports 33:1519−33 doi: 10.1007/s00299-014-1635-2
CrossRef Google Scholar
|
[13]
|
Liu J, Feng L, Gu X, Deng X, Qiu Q, et al. 2019. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research 29:379−90 doi: 10.1038/s41422-019-0145-8
CrossRef Google Scholar
|
[14]
|
Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, et al. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications 12:3426 doi: 10.1038/s41467-021-23786-6
CrossRef Google Scholar
|
[15]
|
Lian N, Wang X, Jing Y, Lin J. 2021. Regulation of cytoskeleton-associated protein activities: linking cellular signals to plant cytoskeletal function. Journal of Integrative Plant Biology 63:241−50 doi: 10.1111/jipb.13046
CrossRef Google Scholar
|
[16]
|
Kong Q, Yuan J, Gao L, Zhao S, Jiang W, et al. 2014. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS One 9:e90612 doi: 10.1371/journal.pone.0090612
CrossRef Google Scholar
|
[17]
|
McDowell JM, Huang S, McKinney EC, An Y, Meagher RB. 1996. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142:587−602 doi: 10.1093/genetics/142.2.587
CrossRef Google Scholar
|
[18]
|
Meagher RB, McKinney EC, Kandasamy MK. 1999. Isovariant dynamics expand and buffer the responses of complex systems: the diverse plant actin gene family. The Plant Cell 11:995−1005 doi: 10.1105/tpc.11.6.995
CrossRef Google Scholar
|
[19]
|
Kropf DL, Bisgrove SR, Hable WE. 1998. Cytoskeletal control of polar growth in plant cells. Current Opinion in Cell Biology 10:117−22 doi: 10.1016/S0955-0674(98)80094-X
CrossRef Google Scholar
|
[20]
|
McCurdy DW, Kovar DR, Staiger CJ. 2001. Actin and actin-binding proteins in higher plants. Protoplasma 215:89−104 doi: 10.1007/BF01280306
CrossRef Google Scholar
|
[21]
|
Galatis B, Apostolakos P. 2004. The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytologist 161:613−39 doi: 10.1046/j.1469-8137.2003.00986.x
CrossRef Google Scholar
|
[22]
|
Maisch J, Nick P. 2007. Actin is involved in auxin-dependent patterning. Plant Physiology 143:1695−704 doi: 10.1104/pp.106.094052
CrossRef Google Scholar
|
[23]
|
Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, et al. 2007. Auxin, actin and growth of the Arabidopsis thaliana primary root. The Plant Journal 50:514−28 doi: 10.1111/j.1365-313X.2007.03068.x
CrossRef Google Scholar
|
[24]
|
Yokota E, Shimmen T. 1999. The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 209:264−66 doi: 10.1007/s004250050631
CrossRef Google Scholar
|
[25]
|
Wang HJ, Wan AR, Jauh GY. 2008. An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiology 147:1619−36 doi: 10.1104/pp.108.118604
CrossRef Google Scholar
|
[26]
|
Qu X, Zhang H, Xie Y, Wang J, Chen N, et al. 2013. Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. The Plant Cell 25:1803−17 doi: 10.1105/tpc.113.110940
CrossRef Google Scholar
|
[27]
|
Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, et al. 2009. Arabidopsis Actin-Depolymerizing Factor AtADF4 mediates defense signal transduction triggered by the pseudomonas syringae effector AvrPphB. Plant Physiology 150:815−24 doi: 10.1104/pp.109.137604
CrossRef Google Scholar
|
[28]
|
Bi S, Li M, Liu C, Liu X, Cheng J, et al. 2022. Actin depolymerizing factor ADF7 inhibits actin bundling protein VILLIN1 to regulate root hair formation in response to osmotic stress in Arabidopsis. PLoS Genetics 18:e1010338 doi: 10.1371/journal.pgen.1010338
CrossRef Google Scholar
|
[29]
|
Huang J, Sun W, Ren J, Yang R, Fan J, et al. 2020. Genome-wide identification and characterization of actin-depolymerizing factor (ADF) family genes and expression analysis of responses to various stresses in Zea Mays L. International Journal of Molecular Sciences 21:1751 doi: 10.3390/ijms21051751
CrossRef Google Scholar
|
[30]
|
Cao H, Amin R, Niu L, Song Z, Dong B, et al. 2021. Multidimensional analysis of actin depolymerising factor family in pigeon pea under different environmental stress revealed specific response genes in each subgroup. Functional Plant Biology 48:180−94 doi: 10.1071/FP20190
CrossRef Google Scholar
|
[31]
|
Porter K, Day B. 2016. From filaments to function: the role of the plant actin cytoskeleton in pathogen perception, signaling and immunity. Journal of Integrative Plant Biology 58:299−311 doi: 10.1111/jipb.12445
CrossRef Google Scholar
|
[32]
|
Qian D, Xiang Y. 2019. Actin cytoskeleton as actor in upstream and downstream of calcium signaling in plant cells. International Journal of Molecular Sciences 20:1403 doi: 10.3390/ijms20061403
CrossRef Google Scholar
|
[33]
|
Grassotti A, Gimelli F. 2011. Bulb and cut flower production in the genus Lilium: current status and the future. Acta Horticulturae 900:21−35 doi: 10.17660/ActaHortic.2011.900.1
CrossRef Google Scholar
|
[34]
|
Xu L, Yang P, Yuan S, Feng Y, Xu H, et al. 2016. Transcriptome analysis identifies key candidate genes mediating purple ovary coloration in asiatic hybrid lilies. International Journal of Molecular Sciences 17:1881 doi: 10.3390/ijms17111881
CrossRef Google Scholar
|
[35]
|
Zhou Y, Wang Y, Xu F, Song C, Yang X, et al. 2022. Small HSPs play an important role in crosstalk between HSF-HSP and ROS pathways in heat stress response through transcriptomic analysis in lilies (Lilium longiflorum). BMC Plant Biology 22:202 doi: 10.1186/s12870-022-03587-9
CrossRef Google Scholar
|
[36]
|
Xin H, Zhang H, Chen L, Li X, Lian Q, et al. 2010. Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Reports 29:875−85 doi: 10.1007/s00299-010-0873-1
CrossRef Google Scholar
|
[37]
|
Wu Z, Liang J, Wang C, Zhao X, Zhong X, et al. 2018. Overexpression of lily HsfA3s in Arabidopsis confers increased thermotolerance and salt sensitivity via alterations in proline catabolism. Journal of Experimental Botany 69:2005−21 doi: 10.1093/jxb/ery035
CrossRef Google Scholar
|
[38]
|
Wang C, Zhou Y, Yang X, Zhang B, Xu F, et al. 2022. The heat stress transcription factor LlHsfA4 enhanced basic thermotolerance through regulating ROS metabolism in lilies (Lilium Longiflorum). International Journal of Molecular Sciences 23:572 doi: 10.3390/ijms23010572
CrossRef Google Scholar
|
[39]
|
Wang K, He J, Zhao Y, Wu T, Zhou X, et al. 2018. EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity. The Plant Cell 30:815−34 doi: 10.1105/tpc.17.00875
CrossRef Google Scholar
|
[40]
|
Yuan C, Li C, Yan L, Jackson AO, Liu Z, et al. 2011. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One 6:e26468 doi: 10.1371/journal.pone.0026468
CrossRef Google Scholar
|
[41]
|
Amberg DC, Zahner JE, Mulholland JW, Pringle JR, Botstein D. 1997. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Molecular Biology of the Cell 8:729−53 doi: 10.1091/mbc.8.4.729
CrossRef Google Scholar
|
[42]
|
Dong T, Wang L, Wang R, Yang X, Jia W, et al. 2023. Transcriptomic analysis reveals candidate genes associated with anther development in Lilium Oriental Hybrid 'Siberia'. Frontiers in Plant Science 14:1128911 doi: 10.3389/fpls.2023.1128911
CrossRef Google Scholar
|
[43]
|
von Koskull-Döring P, Scharf KD, Nover L. 2007. The diversity of plant heat stress transcription factors. Trends in Plant Science 12:452−57 doi: 10.1016/j.tplants.2007.08.014
CrossRef Google Scholar
|
[44]
|
Ding Y, Shi Y, Yang S. 2020. Molecular regulation of plant responses to environmental temperatures. Molecular Plant 13:544−64 doi: 10.1016/j.molp.2020.02.004
CrossRef Google Scholar
|
[45]
|
Barrero RA, Umeda M, Yamamura S, Uchimiya H. 2002. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division. The Plant Cell 14:149−63 doi: 10.1105/tpc.010301
CrossRef Google Scholar
|
[46]
|
Xiang Y, Huang X, Wang T, Zhang Y, Liu Q, et al. 2007. ACTIN BINDING PROTEIN 29 from Lilium pollen plays an important role in dynamic actin remodeling. The Plant Cell 19:1930−46 doi: 10.1105/tpc.106.048413
CrossRef Google Scholar
|
[47]
|
Pivovarova AV, Chebotareva NA, Chernik IS, Gusev NB, Levitsky DI. 2007. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. The FEBS Journal 274:5937−48 doi: 10.1111/j.1742-4658.2007.06117.x
CrossRef Google Scholar
|
[48]
|
Levitsky DI, Pivovarova AV, Mikhailova VV, Nikolaeva OP. 2008. Thermal unfolding and aggregation of actin - stabilization and destabilization of actin filaments. The FEBS Journal 275:4280−95 doi: 10.1111/j.1742-4658.2008.06569.x
CrossRef Google Scholar
|
[49]
|
Malerba M, Crosti P, Cerana R. 2010. Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+. Protoplasma 239:23−30 doi: 10.1007/s00709-009-0078-z
CrossRef Google Scholar
|
[50]
|
Ali A, Bharadwaj S, O'Carroll R, Ovsenek N. 1998. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Molecular and Cellular Biology 18:4949−60 doi: 10.1128/MCB.18.9.4949
CrossRef Google Scholar
|
[51]
|
Hahn A, Bublak D, Schleiff E, Scharf KD. 2011. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. The Plant Cell 23:741−55 doi: 10.1105/tpc.110.076018
CrossRef Google Scholar
|
[52]
|
Port M, Tripp J, Zielinski D, Weber C, Heerklotz D, et al. 2004. Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiology 135:1457−70 doi: 10.1104/pp.104.042820
CrossRef Google Scholar
|
[53]
|
Eun SO, Lee Y. 1997. Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiology 115:1491−98 doi: 10.1104/pp.115.4.1491
CrossRef Google Scholar
|
[54]
|
Hwang JU, Suh S, Yi H, Kim J, Lee Y. 1997. Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiology 115:335−42 doi: 10.1104/pp.115.2.335
CrossRef Google Scholar
|
[55]
|
Franklin-Tong VE, Gourlay CW. 2008. A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochemical Journal 413:389−404 doi: 10.1042/BJ20080320
CrossRef Google Scholar
|
[56]
|
Wang C, Li J, Yuan M. 2007. Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant and Cell Physiology 48:1534−47 doi: 10.1093/pcp/pcm123
CrossRef Google Scholar
|
[57]
|
Zhao Y, Pan Z, Zhang Y, Qu X, Zhang Y, et al. 2013. The actin-related Protein2/3 complex regulates mitochondrial-associated calcium signaling during salt stress in Arabidopsis. The Plant Cell 25:4544−59 doi: 10.1105/tpc.113.117887
CrossRef Google Scholar
|
[58]
|
Sun H, Qiao Z, Chua KP, Tursic A, Liu X, et al. 2018. Profilin negatively regulates formin-mediated actin assembly to modulate PAMP-triggered plant immunity. Current Biology 28:1882−1895.e7 doi: 10.1016/j.cub.2018.04.045
CrossRef Google Scholar
|
[59]
|
Wang X, Mao T. 2019. Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals. Current Opinion in Plant Biology 52:86−96 doi: 10.1016/j.pbi.2019.08.002
CrossRef Google Scholar
|
[60]
|
Li Y, Zhang X, Zhang Y, Ren H. 2022. Controlling the gate: the functions of the cytoskeleton in stomatal movement. Frontiers in Plant Science 13:849729 doi: 10.3389/fpls.2022.849729
CrossRef Google Scholar
|