[1]
|
Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. PNAS 115:E4151−E4158 doi: 10.1073/pnas.1719622115
CrossRef Google Scholar
|
[2]
|
Taniguchi F, Kimura K, Saba T, Ogino A, Yamaguchi S, et al. 2014. Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genetics & Genomes 10:1555−65 doi: 10.1007/s11295-014-0779-0
CrossRef Google Scholar
|
[3]
|
Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77 doi: 10.1016/j.molp.2017.04.002
CrossRef Google Scholar
|
[4]
|
Butt MS, Sultan MT. 2009. Green tea: nature's defense against malignancies. Critical Reviews in Food Science and Nutrition 49:463−73 doi: 10.1080/10408390802145310
CrossRef Google Scholar
|
[5]
|
Feng L, Gao MJ, Hou RY, Hu XY, Zhang L, et al. 2014. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chemistry 155:98−104 doi: 10.1016/j.foodchem.2014.01.044
CrossRef Google Scholar
|
[6]
|
Shen Z, He Y, Li Y, Yang T, Xu X, et al. 2020. Insights into the profiling changes of amino acid content in an albino mutant (Camellia sinensis cv. Huangshanbaicha) during the albinostic stage. Scientia Horticulturae 260:108732 doi: 10.1016/j.scienta.2019.108732
CrossRef Google Scholar
|
[7]
|
Sharma E, Joshi R, Gulati A. 2018. L-Theanine: an astounding Sui generis integrant in tea. Food Chemistry 242:601−10 doi: 10.1016/j.foodchem.2017.09.046
CrossRef Google Scholar
|
[8]
|
Juneja LR, Chu DC, Okubo T, Nagato Y, Yokogoshi H. 1999. L-theanine—a unique amino acid of green tea and its relaxation effect in humans. Trends in Food Science & Technology 10:199−204 doi: 10.1016/S0924-2244(99)00044-8
CrossRef Google Scholar
|
[9]
|
Kanarek R, Mahoney C, Brunye T, Giles G. 2011. Theanine mitigates caffeine-accentuated stress response and reduces attentional processing biases following exposure to stress. European Journal of Pharmacology 668:e16 doi: 10.1016/j.ejphar.2011.09.228
CrossRef Google Scholar
|
[10]
|
Takagi Y, Kurihara S, Higashi N, Morikawa S, Kase T, et al. 2010. Combined administration of L-cystine and L-theanine enhances immune functions and protects against influenza virus infection in aged mice. The Journal of Veterinary Medical Science 72:157−65 doi: 10.1292/jvms.09-0067
CrossRef Google Scholar
|
[11]
|
Liu Q, Duan H, Luan J, Yagasaki K, Zhang G. 2009. Effects of theanine on growth of human lung cancer and leukemia cells as well as migration and invasion of human lung cancer cells. Cytotechnology 59:211−17 doi: 10.1007/s10616-009-9223-y
CrossRef Google Scholar
|
[12]
|
Haskell CF, Kennedy DO, Milne AL, Wesnes KA, Scholey AB. 2008. The effects of L-theanine, caffeine and their combination on cognition and mood. Biological Psychology 77:113−22 doi: 10.1016/j.biopsycho.2007.09.008
CrossRef Google Scholar
|
[13]
|
Kakuda T, Nozawa A, Unno T, Okamura N, Okai O. 2000. Inhibiting effects of theanine on caffeine stimulation evaluated by EEG in the rat. Bioscience, Biotechnology, and Biochemistry 64:287−93 doi: 10.1271/bbb.64.287
CrossRef Google Scholar
|
[14]
|
Deng WW, Ogita S, Ashihara H. 2008. Biosynthesis of theanine (γ-ethylamino-L-glutamic acid) in seedlings of Camellia sinensis. Phytochemistry Letters 1:115−19 doi: 10.1016/j.phytol.2008.06.002
CrossRef Google Scholar
|
[15]
|
Deng WW, Ogita S, Ashihara H. 2009. Ethylamine content and theanine biosynthesis in different organs of Camellia sinensis seedlings. Zeitschrift Fur Naturforschung C, Journal of Biosciences 64:387−90 doi: 10.1515/znc-2009-5-614
CrossRef Google Scholar
|
[16]
|
Fu X, Liao Y, Cheng S, Xu X, Grierson D, et al. 2021. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea. Plant Biotechnology Journal 19:98−108 doi: 10.1111/pbi.13445
CrossRef Google Scholar
|
[17]
|
Yu Y, Kou X, Gao R, Chen X, Zhao Z, et al. 2021. Glutamine synthetases play a vital role in high accumulation of theanine in tender shoots of albino tea germplasm "Huabai 1". Journal of Agricultural and Food Chemistry 69:13904−15 doi: 10.1021/acs.jafc.1c04567
CrossRef Google Scholar
|
[18]
|
Ashihara H. 2015. Occurrence, biosynthesis and metabolism of theanine (γ-glutamyl-L-ethylamide) in plants: a comprehensive review. Natural Product Communications 10:803−10
Google Scholar
|
[19]
|
Bai P, Wei K, Wang L, Zhang F, Ruan L, et al. 2019. Identification of a novel gene encoding the specialized alanine decarboxylase in tea (Camellia sinensis) plants. Molecules 24:540 doi: 10.3390/molecules24030540
CrossRef Google Scholar
|
[20]
|
Zhu B, Guo J, Dong C, Li F, Qiao S, et al. 2021. CsAlaDC and CsTSI work coordinately to determine theanine biosynthesis in tea plants (Camellia sinensis L.) and confer high levels of theanine accumulation in a non-tea plant. Plant Biotechnology Journal 19:2395−97 doi: 10.1111/pbi.13722
CrossRef Google Scholar
|
[21]
|
Dong C, Li F, Yang T, Feng L, Zhang S, et al. 2020. Theanine transporters identified in tea plants (Camellia sinensis L.). The Plant Journal 101:57−70 doi: 10.1111/tpj.14517
CrossRef Google Scholar
|
[22]
|
Fu X, Cheng S, Liao Y, Xu X, Wang X, et al. 2020. Characterization of l-theanine hydrolase in vitro and subcellular distribution of its specific product ethylamine in tea (Camellia sinensis). Journal of Agricultural and Food Chemistry 68:10842−51 doi: 10.1021/acs.jafc.0c01796
CrossRef Google Scholar
|
[23]
|
Chang M, Ma J, Sun Y, Tian L, Liu L, et al. 2023. γ-Glutamyl-transpeptidase CsGGT2 functions as light-activated theanine hydrolase in tea plant (Camellia sinensis L.). Plant, Cell & Environment 46:1596−609 doi: 10.1111/pce.14561
CrossRef Google Scholar
|
[24]
|
Liu ZW, Wu ZJ, Li H, Wang YX, Zhuang J. 2017. L-theanine content and related gene expression: novel insights into theanine biosynthesis and hydrolysis among different tea plant (Camellia sinensis L.) tissues and cultivars. Frontiers in Plant Science 8:498 doi: 10.3389/fpls.2017.00498
CrossRef Google Scholar
|
[25]
|
Cheng S, Fu X, Liao Y, Xu X, Zeng L, et al. 2019. Differential accumulation of specialized metabolite L-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves. Food Chemistry 276:93−100 doi: 10.1016/j.foodchem.2018.10.010
CrossRef Google Scholar
|
[26]
|
Chen Z, Lin S, Chen T, Han M, Yang T, et al. 2023. Haem Oxygenase 1 is a potential target for creating etiolated/albino tea plants (Camellia sinensis) with high theanine accumulation. Horticulture Research 10:uhac269 doi: 10.1093/hr/uhac269
CrossRef Google Scholar
|
[27]
|
Arnon DI. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in beta Vulgaris. Plant Physiology 24:1−15 doi: 10.1104/pp.24.1.1
CrossRef Google Scholar
|
[28]
|
Zhu B, Chen LB, Lu M, Zhang J, Han J, et al. 2019. Caffeine content and related gene expression: novel insight into caffeine metabolism in Camellia plants containing low, normal, and high caffeine concentrations. Journal of Agricultural and Food Chemistry 67:3400−11 doi: 10.1021/acs.jafc.9b00240
CrossRef Google Scholar
|
[29]
|
Tsushida T, Takeo T. 1984. Ethylamine content of fresh tea shoots and made tea determined by high performance liquid chromatography. Journal of the Science of Food and Agriculture 35:77−83 doi: 10.1002/jsfa.2740350113
CrossRef Google Scholar
|
[30]
|
Cheng S, Fu X, Wang X, Liao Y, Zeng L, et al. 2017. Studies on the biochemical formation pathway of the amino acid l-theanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry 65:7210−16 doi: 10.1021/acs.jafc.7b02437
CrossRef Google Scholar
|
[31]
|
Li NN, Lu JL, Li QS, Zheng XQ, Wang XC, et al. 2019. Dissection of chemical composition and associated gene expression in the pigment-deficient tea cultivar 'Xiaoxueya' reveals an albino phenotype and metabolite formation. Frontiers in Plant Science 10:1543 doi: 10.3389/fpls.2019.01543
CrossRef Google Scholar
|
[32]
|
Deng WW, Ashihara H. 2015. Occurrence and de novo biosynthesis of caffeine and theanine in seedlings of tea (Camellia sinensis). Natural Product Communications 10:703−6
Google Scholar
|
[33]
|
Shen Y, Yang X, Xie X. 1990. Effects of late-autumn fertilizer dressing on accumulation of photosynthates in tea (Camellia sinensis) and its contribution to spring tea quality. The Journal of Agricultural Science 115:233−38 doi: 10.1017/s0021859600075171
CrossRef Google Scholar
|
[34]
|
Fontaine JX, Tercé-Laforgue T, Armengaud P, Clément G, Renou JP, et al. 2012. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. The Plant Cell 24:4044−65 doi: 10.1105/tpc.112.103689
CrossRef Google Scholar
|
[35]
|
Lehmann T, Ratajczak L. 2008. The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagine in germinating seeds of yellow lupine. Journal of Plant Physiology 165:149−58 doi: 10.1016/j.jplph.2006.12.010
CrossRef Google Scholar
|
[36]
|
Chen T, Ma J, Li H, Lin S, Dong C, et al. 2023. CsGDH2.1 negatively regulates theanine accumulation in late-spring tea plants (Camellia sinensis var. sinensis). Horticulture Research 10:uhac245 doi: 10.1093/hr/uhac245
CrossRef Google Scholar
|
[37]
|
She G, Yu S, Li Z, Peng A, Li P, et al. 2022. Characterization of CsTSI in the biosynthesis of theanine in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry 70:826−36 doi: 10.1021/acs.jafc.1c04816
CrossRef Google Scholar
|
[38]
|
Li F, Dong C, Yang T, Ma J, Zhang S, et al. 2019. Seasonal theanine accumulation and related gene expression in the roots and leaf buds of tea plants (Camellia sinensis L.). Frontiers in Plant Science 10:1397 doi: 10.3389/fpls.2019.01397
CrossRef Google Scholar
|