[1]
|
Editorial Committee of Flora of China. 2004. Flora of China. Beijing, China: Science Press.
|
[2]
|
Pharmacopoeia Commission of the People's Republic of China. 2020. Pharmacopoeia of the People's Republic of China, Part I. Beijing, China: China Pharmaceutical Science and Technology Press. pp. 32, 230.
|
[3]
|
Fang L, Liao X, Zhang Q, Shi L, Zhou L, et al. 2021. An orthogonal experimental design and QuEChERS based UFLC-MS/MS for multi-pesticides and human exposure risk assessment in honeysuckle. Industrial Crops and Products 164:113384 doi: 10.1016/j.indcrop.2021.113384
CrossRef Google Scholar
|
[4]
|
Xiao O, Li M, Chen D, Chen J, Simal-Gandara J, et al. 2022. The dissipation, processing factors, metabolites, and risk assessment of pesticides in honeysuckle from field to table. Journal of Hazardous Materials 431:128519 doi: 10.1016/j.jhazmat.2022.128519
CrossRef Google Scholar
|
[5]
|
Zhou Z, Li X, Liu J, Dong L, Chen Q, et al. 2015. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Research 25(1):39−49 doi: 10.1038/cr.2014.130
CrossRef Google Scholar
|
[6]
|
Li X, Huang Y, Sun M, Ji H, Dou H, et al. 2018. Honeysuckle-encoded microRNA2911 inhibits enterovirus 71 replication via targeting VP1 gene. Antiviral Research 152:117−23 doi: 10.1016/j.antiviral.2018.02.015
CrossRef Google Scholar
|
[7]
|
Zhou LK, Zhou Z, Jiang XM, Zheng Y, Chen X, et al. 2020. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discovery 6(1):54 doi: 10.1038/s41421-020-00197-3
CrossRef Google Scholar
|
[8]
|
Wang J, Zhou B, Hu X, Dong S, Hong M, et al. 2021. Deciphering the formulation secret underlying chinese Huo-clearing herbal drink. Frontiers in pharmacology 12:654699 doi: 10.3389/fphar.2021.654699
CrossRef Google Scholar
|
[9]
|
Cheng Z, Bao Y, Li Z, Wang J, Wang M, et al. 2023. Lonicera caerulea (Haskap berries): a review of development traceability, functional value, product development status, future opportunities, and challenges. Critical Reviews in Food Science and Nutrition 18:1−25 doi: 10.1080/10408398.2022.2061910
CrossRef Google Scholar
|
[10]
|
Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. 2014. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflammation Research 63:81−90 doi: 10.1007/s00011-013-0674-4
CrossRef Google Scholar
|
[11]
|
Ding Y, Cao Z, Cao L, Ding G, Wang Z, et al. 2017. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Scientific Reports 7:45723 doi: 10.1038/srep45723
CrossRef Google Scholar
|
[12]
|
Shi H, Shi A, Dong L, Lu X, Wang Y, et al. 2016. Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress. Clinical Nutrition 35(6):1366−73 doi: 10.1016/j.clnu.2016.03.002
CrossRef Google Scholar
|
[13]
|
Huang S, Wang LL, Xue NN, Li C, Guo HH, et al. 2019. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics 9(23):6745−63 doi: 10.7150/thno.34674
CrossRef Google Scholar
|
[14]
|
Wang J, Zhao XZ, Qi Q, Tao L, Zhao Q, et al. 2009. Macranthoside B, a hederagenin saponin extracted from Lonicera macranthoides and its anti-tumor activities in vitro and in vivo. Food and chemical toxicology 47(7):1716−21 doi: 10.1016/j.fct.2009.04.034
CrossRef Google Scholar
|
[15]
|
Kim GJ, Song DH, Yoo HS, Chung KH, Lee KJ, et al. 2017. Hederagenin supplementation alleviates the pro-inflammatory and apoptotic response to alcohol in rats. Nutrients 9(1):41 doi: 10.3390/nu9010041
CrossRef Google Scholar
|
[16]
|
Xie ZS, Zhao JP, Wu LM, Chu S, Cui ZH, et al. 2023. Hederagenin improves Alzheimer's disease through PPARα/TFEB-mediated autophagy. Phytomedicine 112:154711 doi: 10.1016/j.phymed.2023.154711
CrossRef Google Scholar
|
[17]
|
Chen J, Song Y, Li P. 2007. Capillary high-performance liquid chromatography with mass spectrometry for simultaneous determination of major flavonoids, iridoid glucosides and saponins in Flos Lonicerae. Journal of Chromatography A 1157(1-2):217−26 doi: 10.1016/j.chroma.2007.05.063
CrossRef Google Scholar
|
[18]
|
Chen Z, Tang N, You Y, Lan J, Liu Y, et al. 2015. Transcriptome analysis reveals the mechanism underlying the production of a high quantity of chlorogenic acid in young leaves of Lonicera macranthoides Hand.-Mazz. PLoS One 10(9):e0137212 doi: 10.1371/journal.pone.0137212
CrossRef Google Scholar
|
[19]
|
Yao XH, Xu JY, Hao JY, Wan Y, Chen T, et al. 2018. Microwave assisted extraction for the determination of chlorogenic acid in Flos Lonicerae by direct analysis in real time mass spectrometry (DART-MS). Journal of Chromatography B 1092:82−87 doi: 10.1016/j.jchromb.2018.05.045
CrossRef Google Scholar
|
[20]
|
Cai Z, Liao H, Wang C, Chen J, Tan M, et al. 2020. A comprehensive study of the aerial parts of Lonicera japonica Thunb. based on metabolite profiling coupled with PLS-DA. Phytochemical Analysis 31(6):786−800 doi: 10.1002/pca.2943
CrossRef Google Scholar
|
[21]
|
Wang L, Jiang Q, Hu J, Zhang Y, Li J. 2016. Research progress on chemical constituents of Lonicerae japonicae flos. BioMed Research International 2016:8968940 doi: 10.1155/2016/8968940
CrossRef Google Scholar
|
[22]
|
Fang Z, Li J, Yang R, Fang L, Zhang Y. 2020. A review: the triterpenoid saponins and biological activities of Lonicera Linn. Molecules 25(17):3773 doi: 10.3390/molecules25173773
CrossRef Google Scholar
|
[23]
|
Ge L, Xie Q, Jiang Y, Xiao L, Wan H, et al. 2022. Genus Lonicera: new drug discovery from traditional usage to modern chemical and pharmacological research. Phytomedicine 96:153889 doi: 10.1016/j.phymed.2021.153889
CrossRef Google Scholar
|
[24]
|
Wu HZ, Luo J, Yin YX, Wei Q. 2004. Effects of chlorogenic acid, an active compound activating calcineurin, purified from Flos Lonicerae on macrophage. Acta Pharmacologica Sinica 25(12):1685−89
Google Scholar
|
[25]
|
Zhang X, Tong J, Zhou Y, Xu X. 2014. Research progress on pharmacodynamic components and pharmacological effects of honeysuckle. Chinese Pharmacological Bulletin 30(8):1049−54(in Chinese) doi: 10.3969/j.issn.1001-1978.2014.08.004
CrossRef Google Scholar
|
[26]
|
Jeong SH, Park MY, Bhosale PB, Abusaliya A, Won CK, et al. 2023. Potential antioxidant and anti-inflammatory effects of Lonicera japonica and Citri Reticulatae Pericarpium polyphenolic extract (LCPE). Antioxidants 12(8):1582 doi: 10.3390/antiox12081582
CrossRef Google Scholar
|
[27]
|
Wang YD, He Y, Dai Z, Kang S, Zhang J, et al. 2016. A comparative study on bioactive constituents in different parts of Lonicera japonica determined by HPLC-ESI-MS(n). Journal of Asian Natural Products Research 18(10):988−1003 doi: 10.1080/10286020.2016.1205039
CrossRef Google Scholar
|
[28]
|
Gao W, Wang R, Li D, Liu K, Chen J, et al. 2016. Comparison of five Lonicera flowers by simultaneous determination of multi-components with single reference standard method and principal component analysis. Journal of Pharmaceutical and Biomedical Analysis 117:345−51 doi: 10.1016/j.jpba.2015.09.008
CrossRef Google Scholar
|
[29]
|
Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3(1):2−20 doi: 10.1093/mp/ssp106
CrossRef Google Scholar
|
[30]
|
Koukol J, Conn EE. 1961. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. Journal of Biological Chemistry 236:2692−98 doi: 10.1016/S0021-9258(19)61721-7
CrossRef Google Scholar
|
[31]
|
Russell DW. 1971. The metabolism of aromatic compounds in higher plants. X. Properties of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control. Journal of Biological Chemistry 246:3870−78 doi: 10.1016/S0021-9258(18)62115-5
CrossRef Google Scholar
|
[32]
|
Hu Y, Gai Y, Yin L, Wang X, Feng C, et al. 2010. Crystal structures of a Populus tomentosa 4-coumarate: CoA ligase shed light on its enzymatic mechanisms. The Plant Cell 22(9):3093−104 doi: 10.1105/tpc.109.072652
CrossRef Google Scholar
|
[33]
|
Kong D, Li Y, Bai M, He H, Liang G, et al. 2017. Correlation between the dynamic accumulation of the main effective components and their associated regulatory enzyme activities at different growth stages in Lonicera japonica Thunb. Industrial Crops and Products 96:16−22 doi: 10.1016/j.indcrop.2016.11.024
CrossRef Google Scholar
|
[34]
|
Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M. 2003. Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. Journal of Biological Chemistry 278(1):95−103 doi: 10.1074/jbc.M209362200
CrossRef Google Scholar
|
[35]
|
Peng X, Li W, Wang W, Bai G. 2010. Cloning and characterization of a cDNA coding a hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase involved in chlorogenic acid biosynthesis in Lonicera japonica. Planta Medica 76(16):1921−26 doi: 10.1055/s-0030-1250020
CrossRef Google Scholar
|
[36]
|
Pu G, Wang P, Zhou B, Liu Z, Xiang F. 2013. Cloning and characterization of Lonicera japonica p-coumaroyl ester 3-hydroxylase which is involved in the biosynthesis of chlorogenic acid. Bioscience, Biotechnology & Biochemistry 77(7):1403−9 doi: 10.1271/bbb.130011
CrossRef Google Scholar
|
[37]
|
Li R, Xu J, Qi Z, Zhao S, Zhao R, et al. 2023. High-resolution genome mapping and functional dissection of chlorogenic acid production in Lonicera maackii. Plant Physiology 192(4):2902−22 doi: 10.1093/plphys/kiad295
CrossRef Google Scholar
|
[38]
|
Niggeweg R, Michael AJ, Martin C. 2004. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature biotechnology 22(6):746−54 doi: 10.1038/nbt966
CrossRef Google Scholar
|
[39]
|
Zhang J, Wu M, Li W, Bai G. 2017. Regulation of chlorogenic acid biosynthesis by hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase in Lonicera japonica. Plant Physiology and Biochemistry 121:74−79 doi: 10.1016/j.plaphy.2017.10.017
CrossRef Google Scholar
|
[40]
|
Villegas RJ, Kojima M. 1986. Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. Journal of Biological Chemistry 261(19):8729−33 doi: 10.1016/S0021-9258(19)84441-1
CrossRef Google Scholar
|
[41]
|
Tanaka M, Kojima M. 1991. Purification and characterization of p-coumaroyl-D-glucose hydroxylase of sweet potato (Ipomoea batatas) roots. Archives of Biochemistry and Biophysics 284(1):151−57 doi: 10.1016/0003-9861(91)90277-p
CrossRef Google Scholar
|
[42]
|
Chang J, Luo J, He G. 2009. Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phyenylpropanoid pathway. Acta Biochimica et Biophysica Sinica 41(2):123−30 doi: 10.1093/abbs/gmn014
CrossRef Google Scholar
|
[43]
|
Payyavula RS, Shakya R, Sengoda VG, Munyaneza JE, Swamy P, et al. 2015. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnology Journal 13(4):551−64 doi: 10.1111/pbi.12280
CrossRef Google Scholar
|
[44]
|
Li Y, Kong D, Bai M, He H, Wang H, et al. 2019. Correlation of the temporal and spatial expression patterns of HQT with the biosynthesis and accumulation of chlorogenic acid in Lonicera japonica flowers. Horticulture Research 6:73 doi: 10.1038/s41438-019-0154-2
CrossRef Google Scholar
|
[45]
|
Yuan Y, Wang Z, Jiang C, Wang X, Huang L. 2014. Exploiting genes and functional diversity of chlorogenic acid and luteolin biosyntheses in Lonicera japonica and their substitutes. Gene 534(2):408−16 doi: 10.1016/j.gene.2012.09.051
CrossRef Google Scholar
|
[46]
|
Tang N, Cao Z, Yang C, Ran D, Wu P, et al. 2021. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. Plant Science 308:110924 doi: 10.1016/j.plantsci.2021.110924
CrossRef Google Scholar
|
[47]
|
Zha L, Liu S, Liu J, Jiang C, Yu S, et al. 2017. DNA methylation influences chlorogenic acid biosynthesis in Lonicera japonica by mediating LjbZIP8 to regulate phenylalanine ammonia-lyase 2 expression. Frontiers in Plant Science 8:1178 doi: 10.3389/fpls.2017.01178
CrossRef Google Scholar
|
[48]
|
Yan K, Zhao S, Bian L, Chen X. 2017. Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb. ) without induction of oxidative stress. Plant Physiology and Biochemistry 112:326−34 doi: 10.1016/j.plaphy.2017.01.020
CrossRef Google Scholar
|
[49]
|
Kitada C, Gong Z, Tanaka Y, Yamazaki M, Saito K. 2001. Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens. Plant and Cell Physiology 42(12):1338−44 doi: 10.1093/pcp/pce169
CrossRef Google Scholar
|
[50]
|
Zuk M, Szperlik J, Hnitecka A, Szopa J. 2019. Temporal biosynthesis of flavone constituents in flax growth stages. Plant Physiology and Biochemistry 142:234−45 doi: 10.1016/j.plaphy.2019.07.009
CrossRef Google Scholar
|
[51]
|
Kim JH, Kim BG, Park Y, Ko JH, Lim CE, et al. 2006. Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana. Bioscience, Biotechnology & Biochemistry 70(6):1471−77 doi: 10.1271/bbb.60006
CrossRef Google Scholar
|
[52]
|
Chen Z, Liu G, Tang N, Li Z. 2018. Transcriptome analysis reveals molecular signatures of luteoloside accumulation in senescing leaves of Lonicera macranthoides. International Journal of Molecular Sciences 19(4):1012 doi: 10.3390/ijms19041012
CrossRef Google Scholar
|
[53]
|
Wang T, Yang B, Guan Q, Chen X, Zhong Z, et al. 2019. Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC Plant Biology 19:198 doi: 10.1186/s12870-019-1803-1
CrossRef Google Scholar
|
[54]
|
Li Y, Wang J, Li L, Song W, Li M, et al. 2023. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Natural Product Reports 40(8):1303−53 doi: 10.1039/d2np00063f
CrossRef Google Scholar
|
[55]
|
Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, et al. 2000. Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. The Plant Journal 24(6):797−804 doi: 10.1111/j.1365-313X.2000.00922.x
CrossRef Google Scholar
|
[56]
|
Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, et al. 2001. Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Letters 508(2):215−20 doi: 10.1016/s0014-5793(01)03045-9
CrossRef Google Scholar
|
[57]
|
Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, et al. 2012. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138−42 doi: 10.1038/nature11692
CrossRef Google Scholar
|
[58]
|
Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, et al. 2013. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36−43 doi: 10.1016/j.phytochem.2012.09.014
CrossRef Google Scholar
|
[59]
|
Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, et al. 2014. The seco-iridoid pathway from Catharanthus roseus. Nature Communications 5:3606 doi: 10.1038/ncomms4606
CrossRef Google Scholar
|
[60]
|
Shitiz K, Sharma N, Pal T, Sood H, Chauhan RS. 2015. NGS transcriptomes and enzyme inhibitors unravel complexity of picrosides biosynthesis in Picrorhiza kurroa Royle ex. Benth. PLoS One 10(12):e0144546 doi: 10.1371/journal.pone.0144546
CrossRef Google Scholar
|
[61]
|
Jin Z, Zhu Q, Guo Y, Xing R, Wang Y, et al. 2022. Functional characterization of secologanin synthase-like homologous genes suggests their involvement in the biosynthesis of diverse metabolites in the secoiridoid biosynthetic pathway of Camptotheca acuminata Decne. International Journal of Biological Macromolecules 222:2594−602 doi: 10.1016/j.ijbiomac.2022.10.042
CrossRef Google Scholar
|
[62]
|
Zhang X, Yu Y, Jiang S, Yu H, Xiang Y, et al. 2019. Oleanane-Type Saponins Biosynthesis in Panax notoginseng via transformation of β-amyrin synthase gene from Panax japonicus. Journal of Agricultural and Food Chemistry 67(7):1982−89 doi: 10.1021/acs.jafc.8b07183
CrossRef Google Scholar
|
[63]
|
Yin X, Xiang Y, Huang FQ, Chen Y, Ding H, et al. 2023. Comparative genomics of the medicinal plants Lonicera macranthoides and L. japonica provides insight into genus genome evolution and hederagenin-based saponin biosynthesis. Plant Biotechnology Journal 21(11):2209−23 doi: 10.1111/pbi.14123
CrossRef Google Scholar
|
[64]
|
Liu Q, Khakimov B, Cárdenas PD, Cozzi F, Olsen CE, et al. 2019. The cytochrome P450 CYP72A552 is key to production of hederagenin-based saponins that mediate plant defense against herbivores. New Phytologist 222(3):1599−609 doi: 10.1111/nph.15689
CrossRef Google Scholar
|
[65]
|
Sun Q, Guo F, Ren S, Zhang L, Liu X, et al. 2023. Construction of a UDP-Arabinose Regeneration System for Efficient Arabinosylation of Pentacyclic Triterpenoids. ACS Synthetic Biology 12(8):2463−74 doi: 10.1021/acssynbio.3c00351
CrossRef Google Scholar
|
[66]
|
Cha MN, Kim HJ, Kim BG, Ahn JH. 2014. Synthesis of chlorogenic acid and p-coumaroyl shikimates from glucose using engineered Escherichia coli. Journal of Microbiology and Biotechnology 24(8):1109−17 doi: 10.4014/jmb.1403.03033
CrossRef Google Scholar
|
[67]
|
Kim BG, Jung WD, Mok H, Ahn JH. 2013. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates. Microbial Cell Factories 12:15 doi: 10.1186/1475-2859-12-15
CrossRef Google Scholar
|
[68]
|
Li S, Liang C, Liu G, Jin JM, Tao Y, et al. 2021. De novo biosynthesis of chlorogenic acid using an artificial microbial community. Journal of Agricultural and Food Chemistry 69(9):2816−25 doi: 10.1021/acs.jafc.0c07588
CrossRef Google Scholar
|
[69]
|
Zhou P, Yue C, Shen B, Du Y, Xu N, et al. 2021. Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid. Applied Microbiology and Biotechnology 105(14−15):5809−19 doi: 10.1007/s00253-021-11445-1
CrossRef Google Scholar
|
[70]
|
Niu FX, Yan ZB, Huang YB, Liu JZ. 2021. Cell-free biosynthesis of chlorogenic acid using a mixture of chassis cell extracts and purified spy-cyclized enzymes. Journal of Agricultural and Food Chemistry 69(28):7938−47 doi: 10.1021/acs.jafc.1c03309
CrossRef Google Scholar
|
[71]
|
Cho AR, Lee SJ, Kim BG, Ahn JH. 2016. Biosynthesis of three N-acetylaminosugar-conjugated flavonoids using engineered Escherichia coli. Microbial Cell Factories 15:182 doi: 10.1186/s12934-016-0582-8
CrossRef Google Scholar
|
[72]
|
Kim SY, Lee HR, Park KS, Kim BG, Ahn JH. 2015. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside. Applied Microbiology and Biotechnology 99(5):2233−42 doi: 10.1007/s00253-014-6282-6
CrossRef Google Scholar
|
[73]
|
Liu L, Liu H, Zhang W, Yao M, Li B, et al. 2019. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations. Engineering 5(2):287−95 doi: 10.1016/j.eng.2018.11.029
CrossRef Google Scholar
|
[74]
|
Hill RA, Connolly JD. 2018. Triterpenoids. Natural Product Reports 35(12):1294−329 doi: 10.1039/c8np00029h
CrossRef Google Scholar
|
[75]
|
Ting HM, Wang B, Rydén AM, Woittiez L, van Herpen T, et al. 2013. The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. New Phytologist 199(2):352−66 doi: 10.1111/nph.12274
CrossRef Google Scholar
|
[76]
|
Hasan MM, Kim HS, Jeon JH, Kim SH, Moon, B, et al. 2014. Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene. Plant Cell Reports 33(6):895−904 doi: 10.1007/s00299-014-1568-9
CrossRef Google Scholar
|
[77]
|
Dudley QM, Jo S, Guerrero DAS, Chhetry M, Smedley MA, et al. 2022. Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana. Communications Biology 5:949 doi: 10.1038/s42003-022-03904-w
CrossRef Google Scholar
|
[78]
|
Ikram NKK, Kashkooli AB, Peramuna A, Krol ARV, Bouwmeester H, et al. 2019. Insights into heterologous biosynthesis of arteannuin B and artemisinin in Physcomitrella patens. Molecules 24(21):3822 doi: 10.3390/molecules24213822
CrossRef Google Scholar
|
[79]
|
Li D, Zhang Q, Zhou Z, Zhao F, Lu W. 2016. Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli. Biotechnology Letters 38(4):603−9 doi: 10.1007/s10529-015-2032-9
CrossRef Google Scholar
|
[80]
|
Billingsley JM, DeNicola AB, Barber JS, Tang MC, Horecka J, et al. 2017. Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae. Metabolic Engineering 44:117−25 doi: 10.1016/j.ymben.2017.09.006
CrossRef Google Scholar
|
[81]
|
Yee DA, DeNicola AB, Billingsley JM, Creso JG, Subrahmanyam V, et al. 2019. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metabolic Engineering 55:76−84 doi: 10.1016/j.ymben.2019.06.004
CrossRef Google Scholar
|
[82]
|
Khalid A, Takagi H, Panthee S, Muroi M, Chappell J, et al. 2017. Development of a terpenoid-production platform in Streptomyces reveromyceticus SN-593. ACS Synthetic Biology 6(12):2339−49 doi: 10.1021/acssynbio.7b00249
CrossRef Google Scholar
|
[83]
|
Duan Y, Liu J, Du Y, Pei X, Li M. 2021. Aspergillus oryzae biosynthetic platform for de novo iridoid production. Journal of Agricultural and Food Chemistry 69(8):2501−11 doi: 10.1021/acs.jafc.0c06563
CrossRef Google Scholar
|
[84]
|
Lu C, Zhang C, Zhao F, Li D, Lu W. 2018. Biosynthesis of ursolic acid and oleanolic acid in Saccharomyces cerevisiae. AIChE Journal 64(11):3794−802 doi: 10.1002/aic.16370
CrossRef Google Scholar
|
[85]
|
Li D, Wu Y, Wei P, Gao X, Li M, et al. 2020. Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production. Chemical eNgineering Science 218:115529 doi: 10.1016/j.ces.2020.115529
CrossRef Google Scholar
|
[86]
|
Lv Q, Xing Y, Liu J, Dong D, Liu Y, et al. 2021. Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation. Acta Pharmaceutica Sinica B 11(9):2880−99 doi: 10.1016/j.apsb.2021.03.011
CrossRef Google Scholar
|
[87]
|
Bai X, Rao X, Wang Y, Shen H, Jin X. 2023. A homogeneous Lonicera japonica polysaccharide alleviates atopic dermatitis by promoting Nrf2 activation and NLRP3 inflammasome degradation via p62. Journal of Ethnopharmacology 309:116344 doi: 10.1016/j.jep.2023.116344
CrossRef Google Scholar
|
[88]
|
Li C, Wang L, Zhao J, Wei Y, Zhai S, et al. 2022. Lonicera rupicola Hook.f.et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway. Phytomedicine 104:154284 doi: 10.1016/j.phymed.2022.154284
CrossRef Google Scholar
|
[89]
|
Zhang B, Huang X, Niu L, Chen X, Hu B, et al. 2023. Lonicera caerulea Pomace Alleviates DSS-Induced Colitis via Intestinal Barrier Improvement and Gut Microbiota Modulation. Foods 12(18):3329 doi: 10.3390/foods12183329
CrossRef Google Scholar
|
[90]
|
Liu D, Yu X, Sun H, Zhang W, Liu G, et al. 2020. Flos Lonicerae flavonoids attenuate experimental ulcerative colitis in rats via suppression of NF-κB signaling pathway. Naunyn-Schmiedeberg's Archives of Pharmacology 393(12):2481−94 doi: 10.1007/s00210-020-01814-4
CrossRef Google Scholar
|
[91]
|
Su X, Zhu ZH, Zhang L, Wang Q, Xu MM, et al. 2021. Anti-inflammatory property and functional substances of Lonicerae japonicae Caulis. Journal of Ethnopharmacology 267:113502 doi: 10.1016/j.jep.2020.113502
CrossRef Google Scholar
|
[92]
|
Lin HW, Lee YJ, Yang DJ, Hsieh MC, Chen CC, et al. 2021. Anti-inflammatory effects of Flos Lonicerae japonicae water extract are regulated by the STAT/NF-κB pathway and HO-1 expression in virus-infected RAW264.7 cells. International Journal of Medical Sciences 18(11):2285−93 doi: 10.7150/ijms.56198
CrossRef Google Scholar
|
[93]
|
Xiong J, Li S, Wang W, Hong Y, Tang K, et al. 2013. Screening and identification of the antibacterial bioactive compounds from Lonicera japonica Thunb. leaves. Food Chemistry 138(1):327−33 doi: 10.1016/j.foodchem.2012.10.127
CrossRef Google Scholar
|
[94]
|
Li M, Wang Y, Jin J, Dou J, Guo Q, et al. 2021. Inhibitory activity of honeysuckle extracts against influenza A virus in vitro and in vivo. Virologica Sinica 36(3):490−500 doi: 10.1007/s12250-020-00302-6
CrossRef Google Scholar
|
[95]
|
Wang C, Horby PW, Hayden FG, Gao GF. 2020. A novel coronavirus outbreak of global health concern. The Lancet 395(10223):470−73 doi: 10.1016/S0140-6736(20)30185-9
CrossRef Google Scholar
|
[96]
|
Lee YR, Chang CM, Yeh YC, Huang CYF, Lin FM, et al. 2021. Honeysuckle aqueous extracts induced let-7a suppress EV71 replication and pathogenesis in vitro and in vivo and is predicted to inhibit SARS-CoV-2. Viruses 13(2):308 doi: 10.3390/v13020308
CrossRef Google Scholar
|
[97]
|
Yeh YC, Doan LH, Huang ZY, Chu LW, Shi TH, et al. 2022. Honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) suppress SARS-CoV-2 entry and COVID-19 related cytokine storm in vitro. Frontiers in Pharmacology 12:765553 doi: 10.3389/fphar.2021.765553
CrossRef Google Scholar
|
[98]
|
Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, et al. 2013. Oxidative stress and cancer: an overview. Ageing Research Reviews 12(1):376−90 doi: 10.1016/j.arr.2012.10.004
CrossRef Google Scholar
|
[99]
|
Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, et al. 2021. Oxidative stress and hypertension. Circulation Research 128(7):993−1020 doi: 10.1161/CIRCRESAHA.121.318063
CrossRef Google Scholar
|
[100]
|
Liu S, Meng F, Zhang D, Shi D, Zhou J, et al. 2022. Lonicera caerulea Berry polyphenols extract alleviates exercise fatigue in mice by reducing oxidative stress, inflammation, skeletal muscle cell apoptosis, and by increasing cell proliferation. Frontiers in Nutrition 9:853225 doi: 10.3389/fnut.2022.853225
CrossRef Google Scholar
|
[101]
|
Golubev D, Zemskaya N, Shevchenko O, Shaposhnikov M, Kukuman D, et al. 2022. Honeysuckle extract (Lonicera pallasii L.) exerts antioxidant properties and extends the lifespan and healthspan of Drosophila melanogaster. Biogerontology 23(2):215−35 doi: 10.1007/s10522-022-09954-1
CrossRef Google Scholar
|
[102]
|
Xiao L, Liang S, Ge L, Wan H, Wu W, et al. 2020. 4, 5-di-O-caffeoylquinic acid methyl ester isolated from Lonicera japonica Thunb. targets the Keap1/Nrf2 pathway to attenuate H2O2-induced liver oxidative damage in HepG2 cells. Phytomedicine 70:153219 doi: 10.1016/j.phymed.2020.153219
CrossRef Google Scholar
|
[103]
|
Lin YL, Wu YHS, Chao MY, Yang DJ, Liu CW, et al. 2024. An alleviative effect of Lonicerae japonicae flos water extract against liver fibrogenesis in vitro and in vivo. Environmental Toxicology 39:2881−92 doi: 10.1002/tox.24154
CrossRef Google Scholar
|
[104]
|
Gong J, Yang F, Yang Q, Tang X, Shu F, et al. 2020. Sweroside ameliorated carbon tetrachloride (CCl4)-induced liver fibrosis through FXR-miR-29a signaling pathway. Journal of Natural Medicines 74(1):17−25 doi: 10.1007/s11418-019-01334-3
CrossRef Google Scholar
|
[105]
|
Zhou L, Wang H, Yi J, Yang B, Li M, et al. 2018. Anti-tumor properties of anthocyanins from Lonicera caerulea 'Beilei' fruit on human hepatocellular carcinoma: in vitro and in vivo study. Biomedicine & Pharmacotherapy 104:520−29 doi: 10.1016/j.biopha.2018.05.057
CrossRef Google Scholar
|
[106]
|
Guo C, Zhang X, Yu Y, Wu Y, Xie L, et al. 2022. Lonicerae japonicae flos extract and chlorogenic acid attenuates high-fat-diet- induced prediabetes via CTRPs-AdipoRs-AMPK/PPARα axes. Frontiers in Nutrition 9:1007679 doi: 10.3389/fnut.2022.1007679
CrossRef Google Scholar
|
[107]
|
Wu S, Hu R, Nakano H, Chen K, Liu M, et al. 2018. Modulation of gut microbiota by Lonicera caerulea L. Berry polyphenols in a mouse model of fatty liver induced by high fat diet. Molecules 23(12):3213 doi: 10.3390/molecules23123213
CrossRef Google Scholar
|
[108]
|
Piekarska J, Madej JP, Gorczykowski M, Szczypka M. 2023. The effects of honeysuckle (Lonicera caerulea L.) berry iridoid-anthocyanin extract on the intestinal and muscle histopathology in mice during experimental trichinellosis. Molecules 28(20):7067 doi: 10.3390/molecules28207067
CrossRef Google Scholar
|
[109]
|
Gu L, Hou Y, Wang G, Liu Q, Ding W, et al. 2022. Characterization of the chloroplast genome of Lonicera ruprechtiana Regel and comparison with other selected species of Caprifoliaceae. PLoS One 17(1):e0262813 doi: 10.1371/journal.pone.0262813
CrossRef Google Scholar
|
[110]
|
He L, Qian J, Li X, Sun Z, Xu X, et al. 2017. Complete chloroplast genome of medicinal plant Lonicera japonica: genome rearrangement, intron gain and loss, and implications for phylogenetic studies. Molecules 22(2):249 doi: 10.3390/molecules22020249
CrossRef Google Scholar
|
[111]
|
Liu ML, Fan WB, Wang N, Dong PB, Zhang TT, et al. 2018. Evolutionary analysis of plastid genomes of seven Lonicera L. species: implications for sequence divergence and phylogenetic relationships. International Journal of Molecular Sciences 19(12):4039 doi: 10.3390/ijms19124039
CrossRef Google Scholar
|
[112]
|
Daniell H, Lin CS, Yu M, Chang WJ. 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology 17:134 doi: 10.1186/s13059-016-1004-2
CrossRef Google Scholar
|
[113]
|
Ahmed I, Biggs PJ, Matthews PJ, Collins LJ, Hendy MD, et al. 2012. Mutational dynamics of aroid chloroplast genomes. Genome Biology and Evolution 4(12):1316−23 doi: 10.1093/gbe/evs110
CrossRef Google Scholar
|
[114]
|
Chen C, Qu DH, Shan FQ, Jin ZX, Sun ZS. 2022. Complete chloroplast genome of Lonicera crassifolia Batalin (Caprifoliaceae) and its phylogenetic implications. Mitochondrial DNA Part B, Resources 7(5):732−34 doi: 10.1080/23802359.2022.2068979
CrossRef Google Scholar
|
[115]
|
Srivastav M, Clement WL, Landrein S, Zhang J, Howarth DG, et al. 2023. A phylogenomic analysis of Lonicera and its bearing on the evolution of organ fusion. American Journal of Botany 110(4):e16143 doi: 10.1002/ajb2.16143
CrossRef Google Scholar
|
[116]
|
Sun QH, Morales-Briones DF, Wang HX, Landis JB, Wen J, et al. 2023. Target sequence capture data shed light on the deeper evolutionary relationships of subgenus Chamaecerasus in Lonicera (Caprifoliaceae). Molecular Phylogenetics and Evolution 184:107808 doi: 10.1016/j.ympev.2023.107808
CrossRef Google Scholar
|
[117]
|
Chen R, Gao J, Yu W, Chen X, Zhai X, et al. 2022. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nature Chemical Biology 18(5):520−29 doi: 10.1038/s41589-022-01014-6
CrossRef Google Scholar
|
[118]
|
Wang L, Li N, Yu S, Zhou J. 2023. Enhancing caffeic acid production in Escherichia coli by engineering the biosynthesis pathway and transporter. Bioresource Technology 368:128320 doi: 10.1016/j.biortech.2022.128320
CrossRef Google Scholar
|
[119]
|
Xiao F, Lian J, Tu S, Xie L, Li J, et al. 2022. Metabolic engineering of Saccharomyces cerevisiae for high-level production of chlorogenic acid from glucose. ACS Synthetic Biology 11(2):800−11 doi: 10.1021/acssynbio.1c00487
CrossRef Google Scholar
|
[120]
|
Shrestha A, Pandey RP, Dhakal D, Parajuli P, Sohng JK. 2018. Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Applied Microbiology and Biotechnology 102(3):1251−67 doi: 10.1007/s00253-017-8694-6
CrossRef Google Scholar
|
[121]
|
Zhao Y, Fan J, Wang C, Feng X, Li C. 2018. Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae. Bioresource Technology 257:339−43 doi: 10.1016/j.biortech.2018.02.096
CrossRef Google Scholar
|
[122]
|
Wang Y, Tan H, Wang Y, Qin JL, Zhao X, et al. 2024. High-level biosynthesis of chlorogenic acid from mixed carbon sources of xylose and glucose through a rationally refactored pathway network. Journal of Agricultural and Food Chemistry 72(7):3633−43 doi: 10.1021/acs.jafc.3c08587
CrossRef Google Scholar
|
[123]
|
Jin K, Shi X, Liu J, Yu W, Liu Y, et al. 2023. Combinatorial metabolic engineering enables the efficient production of ursolic acid and oleanolic acid in Saccharomyces cerevisiae. Bioresource Technology 374:128819 doi: 10.1016/j.biortech.2023.128819
CrossRef Google Scholar
|