[1]
|
Rudall PJ. 2020. Colourful cones: how did flower colour first evolve? Journal of Experimental Botany 71(3):759−67 doi: 10.1093/jxb/erz479
CrossRef Google Scholar
|
[2]
|
Kellenberger RT, Glover BJ. 2023. The evolution of flower colour. Current Biology 33:R484−R488 doi: 10.1016/j.cub.2023.01.055
CrossRef Google Scholar
|
[3]
|
Deng C, Li S, Feng C, Hong Y, Huang H, et al. 2019. Metabolite and gene expression analysis reveal the molecular mechanism for petal colour variation in six Centaurea cyanus cultivars. Plant Physiology and Biochemistry 142:22−33 doi: 10.1016/j.plaphy.2019.06.018
CrossRef Google Scholar
|
[4]
|
Guo F, Guan R, Sun X, Zhang C, Shan C, et al. 2023. Integrated metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key candidate genes involved in colour variation of Scutellaria baicalensis flowers. BMC Plant Biology 23:643 doi: 10.1186/s12870-023-04591-3
CrossRef Google Scholar
|
[5]
|
Ai Y, Zheng QD, Wang MJ, Xiong LW, Li P, et al. 2023. Molecular mechanism of different flower color formation of Cymbidium ensifolium. Plant Molecular Biology 113:193−204 doi: 10.1007/s11103-023-01382-0
CrossRef Google Scholar
|
[6]
|
Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49 doi: 10.1111/j.1365-313X.2008.03447.x
CrossRef Google Scholar
|
[7]
|
Saigo T, Wang T, Watanabe M, Tohge T. 2020. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Current Opinion in Plant Biology 55:93−99 doi: 10.1016/j.pbi.2020.04.001
CrossRef Google Scholar
|
[8]
|
Fukada-Tanaka S, Hoshino A, Hisatomi Y, Habu Y, Hasebe M, et al. 1997. Identification of new Chalcone synthase genes for flower pigmentation in the Japanese and common morning glories. Plant and Cell Physiology 38(6):754−58 doi: 10.1093/oxfordjournals.pcp.a029232
CrossRef Google Scholar
|
[9]
|
Nishihara M, Yamada E, Saito M, Fujita K, Takahashi H, et al. 2014. Molecular characterization of mutations in white-flowered torenia plants. BMC Plant Biology 14:86 doi: 10.1186/1471-2229-14-86
CrossRef Google Scholar
|
[10]
|
Ohno S, Hosokawa M, Kojima M, Kitamura Y, Hoshino A, et al. 2011. Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. Planta 234:945−58 doi: 10.1007/s00425-011-1456-2
CrossRef Google Scholar
|
[11]
|
Nakatsuka T, Mishiba KI, Abe Y, Kubota A, Kakizaki Y, et al. 2008. Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnology 25:61−68 doi: 10.5511/plantbiotechnology.25.61
CrossRef Google Scholar
|
[12]
|
Ohta Y, Atsumi G, Yoshida C, Takahashi S, Shimizu M, et al. 2022. Post-transcriptional gene silencing of the chalcone synthase gene CHS causes Corolla lobe-specific whiting of Japanese gentian. Planta 255:29 doi: 10.1007/s00425-021-03815-w
CrossRef Google Scholar
|
[13]
|
Zhou Z, Ying Z, Wu Z, Yang Y, Fu S, et al. 2021. Anthocyanin genes involved in the flower coloration mechanisms of Cymbidium kanran. Frontiers in Plant Science 12:737815 doi: 10.3389/fpls.2021.737815
CrossRef Google Scholar
|
[14]
|
Lin C, Xing P, Jin H, Zhou C, Li X, et al. 2022. Loss of anthocyanidin synthase gene is associated with white flowers of Salvia miltiorrhiza Bge. f. alba, a natural variant of S. miltiorrhiza. Planta 256:15 doi: 10.1007/s00425-022-03921-3
CrossRef Google Scholar
|
[15]
|
Gould B, Kramer EM. 2007. Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (Columbine, Ranunculaceae). Plant Methods 3:6 doi: 10.1186/1746-4811-3-6
CrossRef Google Scholar
|
[16]
|
Xue L, Wang J, Zhao J, Zheng Y, Wang HF, et al. 2019. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis. BMC Plant Biology 19:423 doi: 10.1186/s12870-019-2048-8
CrossRef Google Scholar
|
[17]
|
Ma L, Zhang Y, Cui G, Duan Q, Jia W, et al. 2023. Transcriptome analysis of key genes involved in color variation between blue and white flowers of Iris bulleyana. BioMed Research International 2023:7407772 doi: 10.1155/2023/7407772
CrossRef Google Scholar
|
[18]
|
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, et al. 2011. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany 62(8):2465−83 doi: 10.1093/jxb/erq442
CrossRef Google Scholar
|
[19]
|
Cappellini F, Marinelli A, Toccaceli M, Tonelli C, Petroni K. 2021. Anthocyanins: from mechanisms of regulation in plants to health benefits in foods. Frontiers in Plant Science 12:748049 doi: 10.3389/fpls.2021.748049
CrossRef Google Scholar
|
[20]
|
Schwinn K, Venail J, Shang Y, MacKay S, Alm V, et al. 2006. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. The Plant Cell 18:831−51 doi: 10.1105/tpc.105.039255
CrossRef Google Scholar
|
[21]
|
Hoballah ME, Gübitz T, Stuurman J, Broger L, Barone M, et al. 2007. Single gene–mediated shift in pollinator attraction in Petunia. The Plant Cell 19:779−90 doi: 10.1105/tpc.106.048694
CrossRef Google Scholar
|
[22]
|
Gates DJ, Olson BJSC, Clemente TE, Smith SD. 2018. A novel R3 MYB transcriptional repressor associated with the loss of floral pigmentation in Iochroma. New Phytologist 217:1346−56 doi: 10.1111/nph.14830
CrossRef Google Scholar
|
[23]
|
Zhu HF, Fitzsimmons K, Khandelwal A, Kranz RG. 2009. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Molecular Plant 2(4):790−802 doi: 10.1093/mp/ssp030
CrossRef Google Scholar
|
[24]
|
Xiang L, Liu X, Li H, Yin X, Grierson D, et al. 2019. CmMYB#7, an R3 MYB transcription factor, acts as a negative regulator of anthocyanin biosynthesis in chrysanthemum. Journal of Experimental Botany 70(12):3111−23 doi: 10.1093/jxb/erz121
CrossRef Google Scholar
|
[25]
|
He J, Xu Y, Huang D, Fu J, Liu Z, et al. 2022. TRIPTYCHON-LIKE regulates aspects of both fruit flavor and color in citrus. Journal of Experimental Botany 73(11):3610−24 doi: 10.1093/jxb/erac069
CrossRef Google Scholar
|
[26]
|
Feller A, Machemer K, Braun EL, Grotewold E. 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal 66:94−116 doi: 10.1111/j.1365-313X.2010.04459.x
CrossRef Google Scholar
|
[27]
|
Spelt C, Quattrocchio F, Mol JNM, Koes R. 2000. anthocyanin1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. The Plant Cell 12:1619−31 doi: 10.1105/tpc.12.9.1619
CrossRef Google Scholar
|
[28]
|
Park KI, Ishikawa N, Morita Y, Choi JD, Hoshino A, et al. 2007. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. The Plant Journal 49:641−54 doi: 10.1111/j.1365-313X.2006.02988.x
CrossRef Google Scholar
|
[29]
|
Lim SH, Kim DH, Jung JA, Lee JY. 2021. Alternative splicing of the basic helix–loop–helix transcription factor gene CmbHLH2 affects anthocyanin biosynthesis in Ray florets of Chrysanthemum (Chrysanthemum morifolium). Frontiers in Plant Science 12:669315 doi: 10.3389/fpls.2021.669315
CrossRef Google Scholar
|
[30]
|
Xiang L, Liu X, Shi Y, Li Y, Li W, et al. 2021. Comparative transcriptome analysis revealed two alternative splicing bHLHs account for flower color alteration in chrysanthemum. International Journal of Molecular Sciences 22:12769 doi: 10.3390/ijms222312769
CrossRef Google Scholar
|
[31]
|
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27 doi: 10.1111/j.1365-313X.2007.03373.x
CrossRef Google Scholar
|
[32]
|
Goodrich J, Carpenter R, Coen ES. 1992. A common gene regulates pigmentation pattern in diverse plant species. Cell 68:955−64 doi: 10.1016/0092-8674(92)90038-e
CrossRef Google Scholar
|
[33]
|
Albert NW, Butelli E, Moss SMA, Piazza P, Waite CN, et al. 2021. Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of Antirrhinum majus. New Phytologist 231:849−63 doi: 10.1111/nph.17142
CrossRef Google Scholar
|
[34]
|
Deng C, Wang J, Lu C, Li Y, Kong D, et al. 2020. CcMYB6-1 and CcbHLH1, two novel transcription factors synergistically involved in regulating anthocyanin biosynthesis in cornflower. Plant Physiology and Biochemistry 151:271−83 doi: 10.1016/j.plaphy.2020.03.024
CrossRef Google Scholar
|
[35]
|
Kim DH, Lee J, Rhee J, Lee JY, Lim SH. 2021. Loss of the R2R3 MYB transcription factor RsMYB1 shapes anthocyanin biosynthesis and accumulation in Raphanus sativus. International Journal of Molecular Sciences 22:10927 doi: 10.3390/ijms222010927
CrossRef Google Scholar
|
[36]
|
Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, et al. 2007. White grapes arose through the mutation of two similar and adjacent regulatory genes. The Plant Journal 49:772−85 doi: 10.1111/j.1365-313X.2006.02997.x
CrossRef Google Scholar
|
[37]
|
Yuan H, Cai W, Chen X, Pang F, Wang J, et al. 2022. Heterozygous frameshift mutation in FaMYB10 is responsible for the natural formation of red and white-fleshed strawberry (Fragaria × ananassa Duch). Frontiers in Plant Science 13:1027567 doi: 10.3389/fpls.2022.1027567
CrossRef Google Scholar
|
[38]
|
Butelli E, Garcia-Lor A, Licciardello C, Las Casas G, Hill L, et al. 2017. Changes in anthocyanin production during domestication of Citrus. Plant Physiology 173:2225−42 doi: 10.1104/pp.16.01701
CrossRef Google Scholar
|
[39]
|
Lin RC, Rausher MD. 2021. R2R3-MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae). New Phytologist 229:1147−62 doi: 10.1111/nph.16908
CrossRef Google Scholar
|
[40]
|
Zhang X, Liang X, He S, Tian H, Liu W, et al. 2023. Seed color in lettuce is determined by the LsTT2, LsCHS, and Ls2OGD genes from the flavonoid biosynthesis pathway. Theoretical and Applied Genetics 136:241 doi: 10.1007/s00122-023-04491-y
CrossRef Google Scholar
|
[41]
|
Feller A, Hernandez JM, Grotewold E. 2006. An ACT-like domain participates in the dimerization of several plant basic-helix-loop-helix transcription factors. The Journal of Biological Chemistry 281:28964−74 doi: 10.1074/jbc.M603262200
CrossRef Google Scholar
|
[42]
|
Kong Q, Pattanaik S, Feller A, Werkman JR, Chai C, et al. 2012. Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proceedings of the National Academy of Sciences of the United States of America 109:E2091−E2097 doi: 10.1073/pnas.1205513109
CrossRef Google Scholar
|
[43]
|
He Y, Li S, Dong Y, Zhang X, Li D, et al. 2022. Fine mapping and characterization of the dominant gene SmFTSH10 conferring non-photosensitivity in eggplant (Solanum melongena L.). Theoretical and Applied Genetics 135:2187−96 doi: 10.1007/s00122-022-04078-z
CrossRef Google Scholar
|
[44]
|
Zhang Y, Feng X, Liu Y, Zhou F, Zhu P. 2022. A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale. Theoretical and Applied Genetics 135:1855−65 doi: 10.1007/s00122-022-04079-y
CrossRef Google Scholar
|
[45]
|
Gonda I, Abu-Abied M, Adler C, Milavski R, Tal O, et al. 2023. Two independent loss-of-function mutations in anthocyanidin synthase homeologous genes are responsible for the all-green phenotype of sweet basil. Physiologia Plantarum 175:e13870 doi: 10.1111/ppl.13870
CrossRef Google Scholar
|
[46]
|
Xu ZS, Yang QQ, Feng K, Xiong AS. 2019. Changing carrot color: insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification. Plant Physiology 181:195−207 doi: 10.1104/pp.19.00523
CrossRef Google Scholar
|
[47]
|
Wang J, Xu R, Qiu S, Wang W, Zheng F. 2023. CsTT8 regulates anthocyanin accumulation in blood orange through alternative splicing transcription. Horticulture Research 10:uhad190 doi: 10.1093/hr/uhad190
CrossRef Google Scholar
|
[48]
|
Gao L, Wang W, Li H, Li H, Yang Y, et al. 2023. Anthocyanin accumulation in grape berry flesh is associated with an alternative splicing variant of VvMYBA1. Plant Physiology and Biochemistry 195:1−13 doi: 10.1016/j.plaphy.2022.12.025
CrossRef Google Scholar
|
[49]
|
Qiu Z, Wang X, Gao J, Guo Y, Huang Z, et al. 2016. The tomato Hoffman's anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS One 11:e0151067 doi: 10.1371/journal.pone.0151067
CrossRef Google Scholar
|
[50]
|
Spelt C, Quattrocchio F, Mol J, Koes R. 2002. ANTHOCYANIN1 of Petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. The Plant Cell 14:2121−35 doi: 10.1105/tpc.003772
CrossRef Google Scholar
|
[51]
|
Goff SA, Cone KC, Fromm ME. 1991. Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins. Genes & Development 5:298−309 doi: 10.1101/gad.5.2.298
CrossRef Google Scholar
|
[52]
|
Kim S, Song H, Hur Y. 2021. Intron-retained radish (Raphanus sativus L.) RsMYB1 transcripts found in colored-taproot lines enhance anthocyanin accumulation in transgenic Arabidopsis plants. Plant Cell Reports 40:1735−49 doi: 10.1007/s00299-021-02735-z
CrossRef Google Scholar
|
[53]
|
Jiang W, Liu T, Nan W, Jeewani DC, Niu Y, et al. 2018. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. Journal of Experimental Botany 69(10):2555−67 doi: 10.1093/jxb/ery101
CrossRef Google Scholar
|
[54]
|
Wang X, Chen X, Luo S, Ma W, Li N, et al. 2022. Discovery of a DFR gene that controls anthocyanin accumulation in the spiny Solanum group: roles of a natural promoter variant and alternative splicing. The Plant Journal 111:1096−109 doi: 10.1111/tpj.15877
CrossRef Google Scholar
|
[55]
|
Colanero S, Tagliani A, Perata P, Gonzali S. 2020. Alternative splicing in the Anthocyanin fruit gene encoding an R2R3 MYB transcription factor affects anthocyanin biosynthesis in tomato fruits. Plant Communications 1:100006 doi: 10.1016/j.xplc.2019.100006
CrossRef Google Scholar
|
[56]
|
Chen D, Liu Y, Yin S, Qiu J, Jin Q, et al. 2020. Alternatively spliced BnaPAP2.A7 isoforms play opposing roles in anthocyanin biosynthesis of Brassica napus L. Frontiers in Plant Science 11:983 doi: 10.3389/fpls.2020.00983
CrossRef Google Scholar
|