[1]
|
Chen X, Martin C, Chen W. 2022. Medicinal Plant Biology: A new era for medicinal plant research. Medicinal Plant Biology 1:1 doi: 10.48130/mpb-2022-0001
CrossRef Google Scholar
|
[2]
|
Guo JQ, Shan L, Yang SH. 2016. Research progress on the establishment of regeneration system of medicinal plants. Chinese herbal medicine 39:2386−91 (in Chinese)
Google Scholar
|
[3]
|
Xu ZH, Zhang XS, Su YH, Hu YX, Xu L, et al. 2019. Plant cell totipotency and regeneration. Scientia Sinica Vitae 49:1282−300 (in Chinese)
Google Scholar
|
[4]
|
Duclercq J, Sangwan-Norreel B. S., Catterou M, Sangwan RS. 2011. De novo shoot organogenesis: from art to science. Trends in Plant Science 16(11):597−606 doi: 10.1016/j.tplants.2011.08.004
CrossRef Google Scholar
|
[5]
|
Zimmerman JL. 1993. Somatic embryogenesis: A model for early development in higher plants. The Plant Cell 5(10):1411−1423 doi: 10.2307/3869792
CrossRef Google Scholar
|
[6]
|
Jean-Luc V, Laurence A, Nicolas N, Timothy John T. 2007. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends in Plant Science 12(6):245−252 doi: 10.1016/j.tplants.2007.04.002
CrossRef Google Scholar
|
[7]
|
Jiménez VM, Thomas C. 2006. Participation of plant hormones in determination and progression of somatic embryogenesis. In Somatic Embryogenesis. Plant Cell Monographs, eds. Mujib A, Šamaj J. Vol. 2. Berlin Heidelberg: Springer. pp.103–18. doi: 10.1007/7089_034
|
[8]
|
Fehér A. 2015. Somatic embryogenesis - Stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1849(4):385−402 doi: 10.1016/j.bbagrm.2014.07.005
CrossRef Google Scholar
|
[9]
|
Horstman A; Bemer M, Boutilier K. 2017. A transcriptional view on somatic embryogenesis. Regeneration 4(4):201−16 doi: 10.1002/reg2.91
CrossRef Google Scholar
|
[10]
|
Yang X, Zhang X. 2010. Regulation of somatic embryogenesis in higher plants. Critical Reviews in Plant Sciences 9(1):36−57 doi: 10.1080/07352680903436291
CrossRef Google Scholar
|
[11]
|
Gao XX, Tian Y, Chen GL, Wu JL, Bai ZQ. 2021. Construction of plant regeneration system of Glycyrrhiza mongolicum and Glycyrrhiza Xinjiang. Molecular Plant Breeding 12(3):1−8 doi: 10.5376/mpb.2021.12.0003
CrossRef Google Scholar
|
[12]
|
Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, van Kammen A, et al. 1994. Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta 194(4):565−72 doi: 10.1007/BF00714471
CrossRef Google Scholar
|
[13]
|
Editorial Committee of Chinese Flora of China Academy of Sciences. 2005. Flora of China. Beijing: Science Press.
|
[14]
|
Mahajan R, Kapoor N, Singh I. 2016. Somatic embryogenesis and callus proliferation in Picrorhiza kurroa Royle ex. Benth. Journal of Experimental Biology and Agricultural Sciences 4:201−9 doi: 10.18006/2016.4(2).201.209
CrossRef Google Scholar
|
[15]
|
You XL, Tan X, Dai JL, Li YH, Choi YE. 2012. Large-scale somatic embryogenesis and regeneration of Panax notoginseng. Plant Cell, Tissue and Organ Culture 108(2):333−38 doi: 10.1007/s11240-011-0030-8
CrossRef Google Scholar
|
[16]
|
Yu CY, Kim JK, Ahn SD. 1997. Callus formation and plant regeneration from immature embryos of Eleutherococcus senticosus. The Korean Journal of Medicinal Crop Science 5(1):49−55
Google Scholar
|
[17]
|
Ren RY, Xue JK, Guo HY, Wei JC. 2017. Induction of hairy roots of Scrophularia buergeriana and its plant regeneration. Chinese Bulletin of Botany 52(6):783−87 doi: 10.11983/CBB16246
CrossRef Google Scholar
|
[18]
|
Xie HY, Wang Y, Li W, Liu WC, Sun CY, et al. 2011. Study on organogenesis and plant regeneration of hairy roots in Panax quinquefolium L. Northern Horticulture 10:164−66
Google Scholar
|
[19]
|
Miguel C, Marum L. 2011. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. Journal of Experimental Botany 62(11):3713−25 doi: 10.1093/jxb/err155
CrossRef Google Scholar
|
[20]
|
Małgorzata DG. 2010. Somatic embryogenesis and plant regeneration in the culture of Arabidopsis thaliana (L.) Heynh. immature zygotic embryos. In Plant Embryo Culture. Methods in Molecular Biology, eds. Thorpe T, Yeung E. Vol 710. Humana Press. pp. 257–65. doi: 10.1007/978-1-61737-988-8_18
|
[21]
|
Ibáñez S, Carneros E, Testillano PS, Pérez-Pérez JM. 2020. Advances in plant regeneration: shake, rattle and roll. Plants 9(7):897 doi: 10.3390/plants9070897
CrossRef Google Scholar
|
[22]
|
Lardon R, Geelen D. 2020. Natural variation in plant pluripotency and regeneration. Plants 9(10):1261 doi: 10.3390/plants9101261
CrossRef Google Scholar
|
[23]
|
Hnatuszko-Konka K,Gerszberg A,Weremczuk-Jeżyna I,Grzegorczyk-Karolak I. 2021. Cytokinin signaling and de novo shoot organogenesis. Genes 12(2):265 doi: 10.3390/genes12020265
CrossRef Google Scholar
|
[24]
|
Chen X, Ren J, Yang J, Zhu ZP Chen R, et al. 2023. A critical review of Andrographis paniculata. Medicinal Plant Biology 2:15 doi: 10.48130/mpb-2023-0015
CrossRef Google Scholar
|
[25]
|
Jiao H, Qiao Y, Pei Y, Liu Z, Su Y, et al. 2018. Study on tissue culture and rapid propagation of Platycodon grandiflorus. Asian Agricultural Research 10(10):68−70 doi: 10.22004/ag.econ.282499
CrossRef Google Scholar
|
[26]
|
Priyanka S, Ls V, Satyanarayana E, Subhankar. 2018. Studies on in vitro regeneration of orchids (Dendrobium nobile) using shoot explant. International Journal of Chemical Studies 6(6):1283−85
Google Scholar
|
[27]
|
Hua ZR. 2015. Callus induction of Fructus Schisandrae Chinensis in Shangluo. Guizhou Agricultural Sciences 43(02):141−44 (in Chinese)
Google Scholar
|
[28]
|
Wang MQ. 2004. Tissue culture and plant regeneration of Artemisia annua. Journal of Beijing University of Traditional Chinese Medicine 27(2):74−75 doi: 10.3321/j.issn:1006-2157.2004.02.022
CrossRef Google Scholar
|
[29]
|
Jiang W, Tang L, Chen P, Ma Y, Jiang G, et al. 2007. Study on the tissue culture technique of Ligusticum chuanxiong Hort. Journal of Anhui Agricultural Sciences 35(27):8448−50 doi: 10.3969/j.issn.0517-6611.2007.27.013
CrossRef Google Scholar
|
[30]
|
umbla-Orbes M, da Cruz ACF, Pinheiro MVM, Rocha DI, Batista DS, et al. 2017. Somatic embryogenesis and de novo shoot organogenesis can be alternatively induced by reactivating pericycle cells in Lisianthus (Eustoma grandiflorum (Raf.) Shinners) root explants. In Vitro Cellular & Developmental Biology - Plant 53(3):209−18 doi: 10.1007/s11627-017-9800-2
CrossRef Google Scholar
|
[31]
|
Fehér A. 2019. Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology? Frontiers in Plant Science 10:536 doi: 10.3389/fpls.2019.00536
CrossRef Google Scholar
|
[32]
|
Vitamvas J, Viehmannova I, Cepkova PH, Mrhalová H, Eliášová K. 2019. Assessment of somaclonal variation in indirect morphogenesis-derived plants of Arracacia xanthorrhiza. Pesquisa Agropecuária Brasileira 54:e00301 doi: 10.1590/s1678-3921.pab2019.v54.00301
CrossRef Google Scholar
|
[33]
|
Firoozabady E, Moy Y. 2004. Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In Vitro Cellular & Developmental Biology - Plant 40:67−74 doi: 10.1079/IVP2003494
CrossRef Google Scholar
|
[34]
|
Muir WH, Hildebrandt AC, Riker AJ. 1954. Plant tissue cultures produced from single isolated cells. Science 119:877−78 doi: 10.1126/science.119.3103.877.b
CrossRef Google Scholar
|
[35]
|
Steward FC, Mapes MO, Mears K. 1958. Growth and organized development of cultured cells. II. organization in cultures grown from freely suspended cells. American Journal of Botany 45:705 doi: 10.2307/2439728
CrossRef Google Scholar
|
[36]
|
Chen, C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, et al. 2024. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. Science China Life Sciences 67:1338−67 doi: 10.1007/s11427-024-2581-2
CrossRef Google Scholar
|
[37]
|
Wang JM, Chen HM. 1991. Plant regeneration from protoplast of Peucedanum praeruptorum. Journal of Integrative Plant Biology 33(4):261−266+332
Google Scholar
|
[38]
|
Li JS, Jia JF, Qi FJ. 1993. Plant regeneration from protoplast of Codonopsis pilosula. Journal of Integrative Plant Biology 33(11):864−867+900
Google Scholar
|
[39]
|
Liu JF, Cheng YQ, Chen ZW. 2009. Protoplast isolation and plant regeneration from leaves of Rhodiola sachalinensis. Chinese herbal medicine 40:1127−31 (in Chinese)
Google Scholar
|
[40]
|
Hsu CT, Chiu CC, Hsiao PY, Lin CY, Cheng S, et al. 2024. Transgene‐free CRISPR/Cas9‐mediated gene editing through protoplast‐to‐plant regeneration enhances active compounds in Salvia miltiorrhiza. Plant Biotechnology Journal 22:1549−51 doi: 10.1111/pbi.14285
CrossRef Google Scholar
|
[41]
|
Maren NA, Duan H, Da K, Yencho GC, Ranney TG, et al. 2022. Genotype-independent plant transformation. Horticulture Research 9:uhac047 doi: 10.1093/hr/uhac047
CrossRef Google Scholar
|
[42]
|
Sun L, Liu Z, Hao G, Zhao Z. 2008. Study of callus tissue culture and rapid propagation of Salvia miltiorrhiza F. Alba. Journal of Shandong Agricultural University (Natural Science Edition) 39(1):11−14 doi: 10.3969/j.issn.1000-2324.2008.01.003
CrossRef Google Scholar
|
[43]
|
Cheng Y, Hong X, Zhang L, Yang W, Zeng Y, et al. 2023. Transcriptomic analysis provides insight into the regulation mechanism of silver ions (Ag+) and jasmonic acid methyl ester (MeJA) on secondary metabolism in the hairy roots of Salvia miltiorrhiza Bunge (Lamiaceae). Medicinal Plant Biology 2:3
Google Scholar
|
[44]
|
Wang WT, Shan CG, Fang CP, Ni DP, Zhu YW, et al. 2011. The establishment and optimization of the regeneration system of Salvia miltiorrhizae Bge. Research and practice on chinese medicines 25:21−23 (in Chinese)
Google Scholar
|
[45]
|
Zhang Q, Yu YJ, Jia L, Leng X, Liu Z, et al. 2014. Establishment of regenerated plantlets system from callus of Astragalus membranaceus (Fisch) Bung. Journal of Beijing Agricultural College 29:18−20 (in Chinese)
Google Scholar
|
[46]
|
Wang HX, Wang GX, Cai ZP, Wang YL, Jin L. 2017. Establishment of high frequency regeneration system of Astragalus mongholicus. Chinese Herbal Medicine 40:18−21 (in Chinese)
Google Scholar
|
[47]
|
Lee MH, Yoon ES, Jeong JH, Choi YE. 2004. Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters. Plant Cell Reports 22:822−27 doi: 10.1007/s00299-004-0763-5
CrossRef Google Scholar
|
[48]
|
Jiménez VM. 2005. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant growth regulation 47:91−110 doi: 10.1007/s10725-005-3478-x
CrossRef Google Scholar
|
[49]
|
Bernula D, Benkő P, Kaszler N, Domonkos I, Valkai I, et al. 2019. Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots. Plant Cell, Tissue and Organ Culture 140(2):327−39 doi: 10.1007/s11240-019-01730-3
CrossRef Google Scholar
|
[50]
|
Ye XG, She MY, Wang K, Du LX, Xu HJ. 2013. Identification, cloning and potential application of genes related to somatic embryogenesis in plant tissue culture. Acta Agronomica Sinica 38(2):191−201 doi: 10.3724/SP.J.1006.2012.00191
CrossRef Google Scholar
|
[51]
|
Singla B, Khurana JP, Khurana P. 2008. Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Reports 27:833−43 doi: 10.1007/s00299-008-0505-1
CrossRef Google Scholar
|
[52]
|
Gaj MD. 2004. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation 43(1):27−47 doi: 10.1023/B:GROW.0000038275.29262.fb
CrossRef Google Scholar
|
[53]
|
Han X, Li M, Yuan Q, Lee S, Li C, et al. 2023. Advances in molecular biological research of Angelica sinensis. Medicinal Plant Biology 2(1):16 doi: 10.48130/mpb-2023-0016
CrossRef Google Scholar
|
[54]
|
Arshad KT, Xiang C, Yuan C, Li L, Wang J, et al. 2024. Elucidation of AsANS controlling pigment biosynthesis in Angelica sinensis through hormonal and transcriptomic analysis. Physiologia Plantarum 176(5):e14500 doi: 10.1111/ppl.14500
CrossRef Google Scholar
|
[55]
|
Yuan C, Li L, Zhou P, Xiang C, Huang C, et al. 2024. Decoding the root lignification mechanism of Angelica sinensis through genome-wide methylation analysis. Journal of Experimental Botany 00:erae392 doi: 10.1093/jxb/erae392
CrossRef Google Scholar
|
[56]
|
Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y. 2000. Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211(5):756−59 doi: 10.1007/s004250000387
CrossRef Google Scholar
|
[57]
|
Goren R, Altman A, Giladi I. 1979. Role of ethylene in abscisic acid-induced callus formation in citrus bud cultures. Plant Physiology 63(2):280−82 doi: 10.1104/pp.63.2.280
CrossRef Google Scholar
|
[58]
|
Hu Y, Bao F, Li J. 2000. Promotive effect of brassinosteroids on cell division involves a distinct CycD3‐induction pathway in Arabidopsis. The Plant Journal 24(5):693−701 doi: 10.1046/j.1365-313x.2000.00915.x
CrossRef Google Scholar
|
[59]
|
Chapman A, Blervacq AS, Vasseur J, Hilbert JL. 2000. Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localisation during embryo development. Planta 211(3):305−14 doi: 10.1007/s004250000299
CrossRef Google Scholar
|
[60]
|
Hake S, Char BR. 1997. Cell-cell interactions during plant development. Genes & Development 11(9):1087−97 doi: 10.1101/gad.11.9.1087
CrossRef Google Scholar
|
[61]
|
Kitagawa M, Jackson D. 2017. Plasmodesmata-mediated cell-to-cell communication in the shoot apical meristem: how stem cells talk. Plants 6(4):12 doi: 10.3390/plants6010012
CrossRef Google Scholar
|
[62]
|
Byrne ME, Kidner CA, Martienssen RA. 2003. Plant stem cells: divergent pathways and common themes in shoots and roots. Current Opinion in Genetics & Development 13(5):551−57 doi: 10.1016/j.gde.2003.08.008
CrossRef Google Scholar
|
[63]
|
Haywood V, Kragler F, Lucas WJ. 2002. Plasmodesmata: pathways for protein and ribonucleoprotein signaling. The Plant Cell 14:S303−S325 doi: 10.1105/tpc.000778
CrossRef Google Scholar
|
[64]
|
Aichinger E, Villar CBR, Farrona S, Reyes JC, Hennig L, et al. 2009. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLOS Genetics 5(8):e1000605 doi: 10.1371/journal.pgen.1000605
CrossRef Google Scholar
|
[65]
|
Kadokura S, Sugimoto K, Tarr P, Suzuki T, Matsunaga S. 2018. Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex. Developmental Biology 442(1):13−27 doi: 10.1016/j.ydbio.2018.04.023
CrossRef Google Scholar
|
[66]
|
Cardoso JC, Teixeira da Silva JA. 2013. Gerbera micropropagation. Biotechnology Advances 31:1344−57 doi: 10.1016/j.biotechadv.2013.05.008
CrossRef Google Scholar
|
[67]
|
Fu CM, Huang NZ, Tang FY, Lu FL. 2008. Study on rapid-propagation and in Vitro preservation of Lonicera confusa. Guangxi Sciences 442(1):13−27 (in Chinese)
Google Scholar
|
[68]
|
Kaviani B. 2011. Conservation of plant genetic resources by cryopreservation. Australian Journal of Crop Science 5:778−800
Google Scholar
|
[69]
|
Merrick P, Fei S. 2015. Plant regeneration and genetic transformation in switchgrass - A review. Journal of Integrative Agriculture 14(3):483−93 doi: 10.1016/S2095-3119(14)60921-7
CrossRef Google Scholar
|
[70]
|
Belonogova MA, Raldugina GN. 2006. Shoot regeneration from cotyledon explants of fibre flax (Linum usitatissimum) and their subsequent rooting. Russian Journal of Plant Physiology 53(4):501−6 doi: 10.1134/S102144370604011X
CrossRef Google Scholar
|
[71]
|
Bhatia S, Bera T. 2015. Somatic embryogenesis and organogenesis. In Modern applications of plant biotechnology in pharmaceutical sciences, eds. Bhatia S, Sharma K, Dahiya R, Bera T. India: Academic Press. pp. 209−30. doi: 10.1016/b978-0-12-802221-4.00006-6
|
[72]
|
Leibfried A, To JPC, Busch W, Stehling S, Kehle A, et al. 2005. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172−75 doi: 10.1038/nature04270
CrossRef Google Scholar
|
[73]
|
Wang D, Zhang XY, Song YX, Zheng DR, Tian J, et al. 2024. Advances in the molecular mechanisms of plant tissue culture and regeneration regulated by totipotency-related transcription factors. Bulletin of biotechnology 40:23−33
Google Scholar
|
[74]
|
Xu C, Hu Y. 2020. The molecular regulation of cell pluripotency in plants. aBIOTECH 1(3):169−77 doi: 10.1007/s42994-020-00028-9
CrossRef Google Scholar
|
[75]
|
Bravo-Vázquez LA, Angulo-Bejarano PI, Bandyopadhyay A, Sharma A, Paul S. 2023. Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. Plant Cell Reports 42(4):689−705 doi: 10.1007/s00299-023-02992-0
CrossRef Google Scholar
|
[76]
|
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, et al. 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell 14(8):1737−49 doi: 10.1105/tpc.001941
CrossRef Google Scholar
|
[77]
|
Aida M, Ishida T, Tasaka M. 1999. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126(8):1563−70 doi: 10.1242/dev.126.8.1563
CrossRef Google Scholar
|
[78]
|
Ji AJ, Luo HM, Xu ZC, Zhang X, Song JY, et al. 2015. Research and perspectives on AP2/ERF transcription factors in medicinal plants. Chinese Science Bulletin 60(14):1272−84 doi: 10.1360/n972014-00697
CrossRef Google Scholar
|
[79]
|
Priyanka J, Vijay K. 2018. BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology. Biotechnology Letters 40(11):1467−75 doi: 10.1007/s10529-018-2613-5
CrossRef Google Scholar
|
[80]
|
Parcy F, Valon C, Kohara A, Miséra S, Giraudat J. 1997. The ABSCISIC ACID-INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. The Plant Cell 9(8):1265−77 doi: 10.1105/tpc.9.8.1265
CrossRef Google Scholar
|
[81]
|
Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, et al. 2001. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proceedings of the National Academy of Sciences of the United States of America 98(20):11806−11 doi: 10.1073/pnas.201413498
CrossRef Google Scholar
|
[82]
|
Ren C, Zhang Z, Wang Y, Li S, Liang Z. 2016. Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.). BMC Genomics 17(1):605 doi: 10.1186/s12864-016-2989-3
CrossRef Google Scholar
|
[83]
|
Li M, Wrobel-Marek J, Heidmann I, Horstman A, Chen B, et al. 2021. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiology 188(2):1095−10
Google Scholar
|
[84]
|
Wang FX, Shang GD, Wu LY, Xu ZG, Zhao XY, et al. 2020. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Developmental Cell 54(6):742−57 doi: 10.1016/j.devcel.2020.07.003
CrossRef Google Scholar
|
[85]
|
Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, et al. 2011. The AP2/ERF Transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology 21(6):508−14 doi: 10.1016/j.cub.2011.02.020
CrossRef Google Scholar
|
[86]
|
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, et al. 2019. Signaling overview of plant somatic embryogenesis. Frontiers in Plant Science 10:77 doi: 10.3389/fpls.2019.00077
CrossRef Google Scholar
|
[87]
|
Wójcikowska B, Wójcik AM, Gaj MD. 2020. Epigenetic regulation of auxin-induced somatic embryogenesis in plants. International Journal of Molecular Sciences 21(7):2307 doi: 10.3390/ijms21072307
CrossRef Google Scholar
|
[88]
|
Karim R, Tan YS, Singh P, Nuruzzaman M, Khalid N. 2018. Expression and DNA methylation of MET1, CMT3 and DRM2 during In Vitro culture of Boesenbergia tundaro (L.) Mansf. Philippine Agricultural Scientist 101(3):261−70
Google Scholar
|
[89]
|
Mozgova I, Hennig L. 2015. The polycomb group protein regulatory network. Annual Review of Plant Biology 66(1):269−96 doi: 10.1146/annurev-arplant-043014-115627
CrossRef Google Scholar
|
[90]
|
Ogas J, Kaufmann S, Henderson J, Somerville C. 1999. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 96(24):13839−44 doi: 10.1073/pnas.96.24.13839
CrossRef Google Scholar
|
[91]
|
Rider SD, Henderson J, Ronald EJ, Howard JE, Jeanne RS, et al. 2003. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. The Plant Journal 35(1):33−43 doi: 10.1046/j.1365-313x.2003.01783.x
CrossRef Google Scholar
|
[92]
|
Tanaka M, Kikuchi A, Kamada H. 2008. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiology 146(1):149−61 doi: 10.1104/pp.107.111674
CrossRef Google Scholar
|
[93]
|
Ohtani M, Takebayashi A, Hiroyama R, Xu B, Kudo T, et al. 2015. Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana. Journal of Plant Research 128(3):371−80 doi: 10.1007/s10265-015-0704-0
CrossRef Google Scholar
|
[94]
|
Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc'h A, Carnero E, et al. 2009. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal 57(4):626−44 doi: 10.1111/j.1365-313X.2008.03715.x
CrossRef Google Scholar
|
[95]
|
Perianez-Rodriguez J, Manzano C, Moreno-Risueno MA. 2014. Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin? Frontiers in Plant Science 5:219 doi: 10.3389/fpls.2014.00219
CrossRef Google Scholar
|
[96]
|
Ito J, Fukaki H, Onoda M, Li L, Li CY, et al. 2016. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America 113(23):6562−67 doi: 10.1073/pnas.1600739113
CrossRef Google Scholar
|
[97]
|
Fan M, Xu C, Xu K, Hu Y. 2012. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Research 22(7):1169−80 doi: 10.1038/cr.2012.63
CrossRef Google Scholar
|
[98]
|
Xu C, Cao H, Zhang Q, Wang H, Xin W, et al. 2018. Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration. Nature Plants 4:105−8 doi: 10.1038/s41477-017-0095-4
CrossRef Google Scholar
|
[99]
|
Xu C, Cao H, Xu E, Zhang S, Hu Y. 2017. Genome-wide identification of Arabidopsis LBD29 target genes reveals the molecular events behind auxin-induced cell reprogramming during callus formation. Plant and Cell Physiology 59(4):749−60 doi: 10.1093/pcp/pcx168
CrossRef Google Scholar
|
[100]
|
Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants 7(11):1453−60 doi: 10.1038/s41477-021-01015-8
CrossRef Google Scholar
|
[101]
|
Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, et al. 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449(7165):1053−57 doi: 10.1038/nature06206
CrossRef Google Scholar
|
[102]
|
Xu C, Chang P, Guo S, Yang X, Liu X, et al. 2023. Transcriptional activation by WRKY23 and derepression by removal of bHLH041 coordinately establish callus pluripotency in Arabidopsis regeneration. The Plant Cell 36(1):158−73 doi: 10.1093/plcell/koad255
CrossRef Google Scholar
|
[103]
|
Lee K, Park O-S, Seo PJ. , 2017. Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation. Science Signaling 10(507): eaan0316
|
[104]
|
Liu Z, Li J, Wang L, Li Q, Lu Q, et al. 2016. Repression of callus initiation by the miRNA‐directed interaction of auxin–cytokinin in Arabidopsis thaliana. The Plant Journal 87(4):391−402 doi: 10.1111/tpj.13211
CrossRef Google Scholar
|
[105]
|
Greenwood MS., Cui X, Xu F. 2001. Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings. Physiologia Plantarum 111(3):373−80 doi: 10.1034/j.1399-3054.2001.1110315.x
CrossRef Google Scholar
|
[106]
|
Chen L, Tong J, Xiao L, Ruan Y, Liu J, et al. 2016. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. Journal of Experimental Botany 67(14):4273−84 doi: 10.1093/jxb/erw213
CrossRef Google Scholar
|
[107]
|
Liu JC, Sheng LH, Xu YQ, Li JQ, Yang ZN, et al. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell 26(3):1081−1093 doi: 10.1105/tpc.114.122887
CrossRef Google Scholar
|
[108]
|
Sang YL, Cheng ZJ, Zhang XS. 2018. iPSCs: A comparison between animals and plants. Trends in Plant Science 23(8):660−66 doi: 10.1016/j.tplants.2018.05.008
CrossRef Google Scholar
|
[109]
|
Li T, Hu J, Sun Y, Li B, Zhang D, et al. 2021. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Molecular Plant 14(11):1787−98 doi: 10.1016/j.molp.2021.07.010
CrossRef Google Scholar
|
[110]
|
Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, et al. 2019. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology 70(1):377−406 doi: 10.1146/annurev-arplant-050718-100434
CrossRef Google Scholar
|
[111]
|
Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, et al. 2017. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. The Plant Cell 29(5):1073−87 doi: 10.1105/tpc.16.00863
CrossRef Google Scholar
|
[112]
|
Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, et al. 2007. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134(19):3539−48 doi: 10.1242/dev.010298
CrossRef Google Scholar
|
[113]
|
Han H, Liu X, Zhou Y. 2020. Transcriptional circuits in control of shoot stem cell homeostasis. Current Opinion in Plant Biology 53:50−56 doi: 10.1016/j.pbi.2019.10.004
CrossRef Google Scholar
|
[114]
|
Sugimoto K, Temman H, Kadokura S, Matsunaga S. 2019. To regenerate or not to regenerate: factors that drive plant regeneration. Current Opinion in Plant Biology 47:138−50 doi: 10.1016/j.pbi.2018.12.002
CrossRef Google Scholar
|
[115]
|
Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ., et al. 2015. PLETHORA genes control regeneration by a two-step mechanism. Current Biology 25(8):1017−30 doi: 10.1016/j.cub.2015.02.022
CrossRef Google Scholar
|
[116]
|
Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, et al. 2016. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. The Plant Cell 29(1):54−69 doi: 10.1105/tpc.16.00623
CrossRef Google Scholar
|
[117]
|
Su YH, Tang LP, Zhao XY, Zhang XS. 2021. Plant cell totipotency: Insights into cellular reprogramming. Journal of Integrative Plant Biology 63(1):228−43 doi: 10.1111/jipb.12972
CrossRef Google Scholar
|
[118]
|
Li W, Liu H, Cheng ZJ, Su Y, Han HN, et al. 2011. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLOS Genetics 7(8):e1002243 doi: 10.1371/journal.pgen.1002243
CrossRef Google Scholar
|
[119]
|
Ishihara H, Sugimoto K, Tarr PT, Temman H, Kadokura S, et al. 2019. Primed histone demethylation regulates shoot regenerative competency. Nature Communications 10:1786 doi: 10.1038/s41467-019-09386-5
CrossRef Google Scholar
|
[120]
|
Zhang TQ, Lian H, Tang HB, Dolezal K, Zhou CM, et al. 2015. An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants. The Plant Cell 27(2):349−60 doi: 10.1105/tpc.114.135186
CrossRef Google Scholar
|
[121]
|
Shin J, Bae S, Seo PJ. 2019. De novo shoot organogenesis during plant regeneration. Journal of Experimental Botany 71(1):63−72 doi: 10.1093/jxb/erz395
CrossRef Google Scholar
|
[122]
|
Wan XF, Wang S, Kang CZ, Lu CG, Guo LP, et al. 2022. Trends and development suggestions of Chinese herbal medicine industry during the 14th Five-Year Plan period. China Journal of Chinese Medicine 47:1144−1152 (in Chinese)
Google Scholar
|
[123]
|
Jing H, Tian Z, Zhong K, Li J. 2021. Progress and perspective of molecular design breeding. China Science (Life Science) 51:1356−65(in Chinese) doi: 10.1360/SSV-2021-0214
CrossRef Google Scholar
|
[124]
|
Ma XJ, Mo CM. 2017. Prospect of molecular breeding of medicinal plants. China Journal of Traditional Chinese Medicine 42:2021−31 (in Chinese)
Google Scholar
|
[125]
|
Anjanappa RB., Gruissem W. 2021. Current progress and challenges in crop genetic transformation. Journal of Plant Physiology 261:153411 doi: 10.1016/j.jplph.2021.153411
CrossRef Google Scholar
|
[126]
|
Liu J, Li C, Zhang Y, Jiang C, Liu C, et al. 2023. Research progress and strategic considerations for the regeneration of Chinese medicine resources. Scientia Sinica Vitae 53:1274−86 doi: 10.1360/SSV-2023-0073
CrossRef Google Scholar
|
[127]
|
Phillips GC, Garda M. 2019. Plant tissue culture media and practices: an overview. In Vitro Cellular & Developmental Biology – Plant 55(3):242−57 doi: 10.1007/s11627-019-09983-5
CrossRef Google Scholar
|
[128]
|
Long Y, Yang Y, Pan G, Shen Y. 2022. New insights into tissue culture plant-regeneration mechanisms. Frontiers in Plant Science 13:926752 doi: 10.3389/fpls.2022.926752
CrossRef Google Scholar
|
[129]
|
Huang G, Zhang HY, Huang X. 2010. Tissue culture of medicinal plant Andrographis paniculata. Chinese agricultural science bulletin 26:33−36 (in Chinese)
Google Scholar
|
[130]
|
Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology 38:1274−79 doi: 10.1038/s41587-020-0703-0
CrossRef Google Scholar
|
[131]
|
Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4(1):100345 doi: 10.1016/j.xinn.2022.100345
CrossRef Google Scholar
|
[132]
|
Lu J, Li S, Deng S, Wang M, Wu Y, et al. 2024. A method of genetic transformation and gene editing of succulents without tissue culture. Plant Biotechnology Journal 22(7):1981−88 doi: 10.1111/pbi.14318
CrossRef Google Scholar
|
[133]
|
Cody JP, Maher MF, Nasti RA, Starker CG, Chamness JC, et al. 2022. Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana. Nature Protocols 18(1):81−107 doi: 10.1038/s41596-022-00749-9
CrossRef Google Scholar
|
[134]
|
Liu Q, Zhao C, Sun K, Deng Y, Li Z. 2023. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. Molecular Plant 16(3):616−31 doi: 10.1016/j.molp.2023.02.003
CrossRef Google Scholar
|
[135]
|
Hassan MM, Zhang Y, Yuan G, De K, Chen JG, et al. 2021. Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science 26(11):1133−52 doi: 10.1016/j.tplants.2021.06.015
CrossRef Google Scholar
|
[136]
|
Shi GL, Li W, Xiang H, Gong LY. 2024. Origin of CRISPR-Cas: progress in research and applications of TnpB and IscB. Acta Microbiologica Sinica 64(9):3091−104 (in Chinese)
Google Scholar
|
[137]
|
Lv Z, Chen W, Fang S, Dong B, Wang X, et al. 2024. Targeted mutagenesis in Arabidopsis and medicinal plants using transposon-associated TnpB. Journal of Integrative Plant Biology 66:2083−86 doi: 10.1111/jipb.13758
CrossRef Google Scholar
|
[138]
|
Liao RY, Wang JW. 2023. Analysis of meristems and plant regeneration at single-cell resolution. Current Opinion in Plant Biology 74:102378 doi: 10.1016/j.pbi.2023.102378
CrossRef Google Scholar
|
[139]
|
Liu X, Bie X, Lin X, Li M, Wang H, et al. 2023. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nature Plants 9(6):908−25 doi: 10.1038/s41477-023-01406-z
CrossRef Google Scholar
|
[140]
|
Zhao Y, Liu G, Yang F, Liang Y, Gao Q, et al. 2023. Multilayered regulation of secondary metabolism in medicinal plants. Molecular Horticulture 3(1):11 doi: 10.1186/s43897-023-00059-y
CrossRef Google Scholar
|
[141]
|
Meng F, Chu T, Hu L, Zhang M, Cheng Q, et al. 2024. TCMPG 2.0: an enhanced database of traditional Chinese medicine plant genomes. Medicinal Plant Biology 3:e003
Google Scholar
|