[1]
|
Mao K, Zhang G. 2021. The role of PARP1 in neurodegenerative diseases and aging. The FEBS JournalIn Press doi: 10.1111/febs.15716
CrossRef Google Scholar
|
[2]
|
Lakey-Beitia J, Berrocal R, Rao KS, Durant AA. 2015. Polyphenols as therapeutic molecules in Alzheimer's Disease through modulating amyloid pathways. Molecular Neurobiology 51:466−79 doi: 10.1007/s12035-014-8722-9
CrossRef Google Scholar
|
[3]
|
Sade Yazdi D, Laor Bar-Yosef D, Adsi H, Kreiser T, Sigal S, et al. 2021. Homocysteine fibrillar assemblies display cross-talk with Alzheimer's disease β-amyloid polypeptide. PNAS 118:e2017575118 doi: 10.1073/pnas.2017575118
CrossRef Google Scholar
|
[4]
|
Ke P, Zhou R, Serpell LC, Riek R, Knowles TPJ, et al. 2020. Half a century of amyloids: past, present and future. Chemical Society Reviews 49:5473−509 doi: 10.1039/C9CS00199A
CrossRef Google Scholar
|
[5]
|
Chiti F, Dobson CM. 2017. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annual Review of Biochemistry 86:27−68 doi: 10.1146/annurev-biochem-061516-045115
CrossRef Google Scholar
|
[6]
|
Hu B, Shen Y, Adamcik J, Fischer P, Schneider M, et al. 2018. Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity. ACS Nano 12:3385−96 doi: 10.1021/acsnano.7b08969
CrossRef Google Scholar
|
[7]
|
Riek R, Eisenberg DS. 2016. The activities of amyloids from a structural perspective. Nature 539:227−35 doi: 10.1038/nature20416
CrossRef Google Scholar
|
[8]
|
Nikbakht Nasrabadi M, Sedaghat Doost A, Mezzenga R. 2021. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids 118:106789 doi: 10.1016/j.foodhyd.2021.106789
CrossRef Google Scholar
|
[9]
|
Herrup K. 2015. The case for rejecting the amyloid cascade hypothesis. Nature Neuroscience 18:794−99 doi: 10.1038/nn.4017
CrossRef Google Scholar
|
[10]
|
Bieschke J. 2013. Natural compounds may open new routes to treatment of amyloid diseases. Neurotherapeutics 10:429−39 doi: 10.1007/s13311-013-0192-7
CrossRef Google Scholar
|
[11]
|
Hardy J, Selkoe, DJ. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353−56 doi: 10.1126/science.1072994
CrossRef Google Scholar
|
[12]
|
Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, et al. 1992. Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiology of Aging 13:179−89 doi: 10.1016/0197-4580(92)90027-U
CrossRef Google Scholar
|
[13]
|
Nargeh H, Aliabadi F, Ajami M, Pazoki-Toroudi H. 2021. Role of polyphenols on gut microbiota and the ubiquitin-proteasome system in neurodegenerative diseases. Journal of Agricultural and Food Chemistry 69:6119−44 doi: 10.1021/acs.jafc.1c00923
CrossRef Google Scholar
|
[14]
|
Granda H, de Pascual-Teresa S. 2018. Interaction of polyphenols with other food components as a means for their neurological health benefits. Journal of Agricultural and Food Chemistry 66:8224−30 doi: 10.1021/acs.jafc.8b02839
CrossRef Google Scholar
|
[15]
|
Szwajgier D, Baranowska-Wojcik E, Borowiec K. 2018. Phenolic acids exert anticholinesterase and cognition-improving effects. Current Alzheimer Research 15:531−43 doi: 10.2174/1567205014666171128102557
CrossRef Google Scholar
|
[16]
|
Ngoungoure VLN, Schluesener J, Moundipa PF, Schluesener H. 2015. Natural polyphenols binding to amyloid: A broad class of compounds to treat different human amyloid diseases. Molecular Nutrition & Food Research 59:8−20 doi: 10.1002/mnfr.201400290
CrossRef Google Scholar
|
[17]
|
So M, Kimura Y, Yamaguchi K, Sugiki T, Fujiwara T, et al. 2021. Polyphenol-solubility alters amyloid fibril formation of α-synuclein. Protein Science 30:1701−13 doi: 10.1002/pro.4130
CrossRef Google Scholar
|
[18]
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. 2021. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry 338:127535 doi: 10.1016/j.foodchem.2020.127535
CrossRef Google Scholar
|
[19]
|
Lund MN. 2021. Reactions of plant polyphenols in foods: Impact of molecular structure. Trends in Food Science & Technology 112:241−51 doi: 10.1016/j.jpgs.2021.03.056
CrossRef Google Scholar
|
[20]
|
de Paulo Farias D, Neri-Numa IA, de Araújo FF, Pastore GM. 2020. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chemistry 306:125630 doi: 10.1016/j.foodchem.2019.125630
CrossRef Google Scholar
|
[21]
|
Lourenco Neto M, Agra KL, Suassuna Filho J, Jorge FE. 2018. TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 193:249−57 doi: 10.1016/j.saa.2017.12.036
CrossRef Google Scholar
|
[22]
|
Vuolo MM, Lima VS, Marostica Junior MR. 2019. Phenolic compounds: Structure, classification, and antioxidant power. In Bioactive Compounds: Health Benefits and Potential Applications, ed. Campos MRS. UK: Woodhead Publishing, Elsevier. pp. 33−50 https://doi.org/10.1016/B978-0-12-814774-0.00002-5
|
[23]
|
de la Rosa LA, Moreno-Escamilla JO, Rodrigo-García J, Alvarez-Parrilla E. 2019. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables, ed. Yahia EM. UK: Woodhead Publishing, Elsevier. pp. 253−71 https://doi.org/10.1016/b978-0-12-813278-4.00012-9
|
[24]
|
Farrag Y, Ide W, Montero B, Rico M, Rodríguez-Llamazares S, et al. 2018. Starch films loaded with donut-shaped starch-quercetin microparticles: Characterization and release kinetics. International Journal of Biological Macromolecules 118:2201−7 doi: 10.1016/j.ijbiomac.2018.07.087
CrossRef Google Scholar
|
[25]
|
Zhang L, Gui S, Wang J, Chen Q, Zeng J, et al. 2020. Oral administration of green tea polyphenols (TP) improves ileal injury and intestinal flora disorder in mice with Salmonella typhimurium infection via resisting inflammation, enhancing antioxidant action and preserving tight junction. Journal of Functional Foods 64:103654 doi: 10.1016/j.jff.2019.103654
CrossRef Google Scholar
|
[26]
|
Massounga Bora AF, Ma S, Li X, Liu L. 2018. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Research International 105:241−49 doi: 10.1016/j.foodres.2017.11.047
CrossRef Google Scholar
|
[27]
|
Takahashi M, Ozaki M, Miyashita M, Fukazawa M, Nakaoka T, et al. 2019. Effects of timing of acute catechin-rich green tea ingestion on postprandial glucose metabolism in healthy men. The Journal of Nutritional Biochemistry 73:108221 doi: 10.1016/j.jnutbio.2019.108221
CrossRef Google Scholar
|
[28]
|
Jilani H, Cilla A, Barberá R, Hamdi M. 2020. Antiproliferative activity of green, black tea and olive leaves polyphenols subjected to biosorption and in vitro gastrointestinal digestion in Caco-2 cells. Food Research International 136:109317 doi: 10.1016/j.foodres.2020.109317
CrossRef Google Scholar
|
[29]
|
Lv P, Shi F, Chen X, Xu L, Wang C, et al. 2020. Tea polyphenols inhibit the growth and angiogenesis of breast cancer xenografts in a mouse model. Journal of Traditional Chinese Medical Sciences 7:141−47 doi: 10.1016/j.jtcms.2020.05.001
CrossRef Google Scholar
|
[30]
|
Miller PE, Zhao D, Frazier-Wood AC, Michos ED, Averill M, et al. 2017. Associations of coffee, tea, and caffeine intake with coronary artery calcification and cardiovascular events. The American Journal of Medicine 130:188−97.E5 doi: 10.1016/j.amjmed.2016.08.038
CrossRef Google Scholar
|
[31]
|
Wang D, Gao Q, Wang T, Kan Z, Li X, et al. 2020. Green tea polyphenols and epigallocatechin-3-gallate protect against perfluorodecanoic acid induced liver damage and inflammation in mice by inhibiting NLRP3 inflammasome activation. Food Research International 127:108628 doi: 10.1016/j.foodres.2019.108628
CrossRef Google Scholar
|
[32]
|
Liang J, Yan H, Puligundla P, Gao X, Zhou Y, Wan X. 2017. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocolloids 69:286−92 doi: 10.1016/j.foodhyd.2017.01.041
CrossRef Google Scholar
|
[33]
|
Miyamoto T, Zhang X, Ueyama Y, Apisada K, Nakayama M, et al. 2017. Development of novel monoclonal antibodies directed against catechins for investigation of antibacterial mechanism of catechins. Journal of Microbiological Methods 137:6−13 doi: 10.1016/j.mimet.2017.03.014
CrossRef Google Scholar
|
[34]
|
Yan Z, Zhong Y, Duan Y, Chen Q, Li F. 2020. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition 6:115−23 doi: 10.1016/j.aninu.2020.01.001
CrossRef Google Scholar
|
[35]
|
Lu W, Kelly AL, Miao S. 2016. Emulsion-based encapsulation and delivery systems for polyphenols. Trends in Food Science & Technology 47:1−9 doi: 10.1016/j.jpgs.2015.10.015
CrossRef Google Scholar
|
[36]
|
Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, et al. 2013. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology 75:588−602 doi: 10.1111/j.1365-2125.2012.04425.x
CrossRef Google Scholar
|
[37]
|
Zhang Y, Lv C, Zhao G. 2021. Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier. Food Reviews International doi: 10.1080/87559129.2021.1888973
CrossRef Google Scholar
|
[38]
|
Tsai TH. 2002. Determination of naringin in rat blood, brain, liver, and bile using microdialysis and its interaction with cyclosporin A, a P-glycoprotein modulator. Journal of Agricultural and Food Chemistry 50:6669−74 doi: 10.1021/jf020603p
CrossRef Google Scholar
|
[39]
|
Faria A, Pestana D, Teixeira D, Azevedo J, Freitas V, et al. 2010. Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cellular and Molecular Biology Letters 15:234−41 doi: 10.2478/s11658-010-0006-4
CrossRef Google Scholar
|
[40]
|
Chen TY, Kritchevsky J, Hargett K, Feller K, Klobusnik R, et al. 2015. Plasma bioavailability and regional brain distribution of polyphenols from apple/grape seed and bilberry extracts in a young swine model. Molecular Nutrition & Food Research 59:2432−47 doi: 10.1002/mnfr.201500224
CrossRef Google Scholar
|
[41]
|
Milbury PE, Kalt W. 2010. Xenobiotic metabolism and berry flavonoid transport across the blood−brain barrier. Journal of Agricultural and Food Chemistry 58:3950−56 doi: 10.1021/jf903529m
CrossRef Google Scholar
|
[42]
|
Lu J, Wu D, Zheng Y, Hu B, Zhang Z. 2010. Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathology 20:598−612 doi: 10.1111/j.1750-3639.2009.00339.x
CrossRef Google Scholar
|
[43]
|
Fornasaro S, Ziberna L, Gasperotti M, Tramer F, Vrhovšek U, et al. 2016. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study. Scientific Reports 6:22815 doi: 10.1038/srep22815
CrossRef Google Scholar
|
[44]
|
Rehman SU, Shah SA, Ali T, Chung JI, Kim MO. 2017. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Molecular Neurobiology 54:255−71 doi: 10.1007/s12035-015-9604-5
CrossRef Google Scholar
|
[45]
|
Talavéra S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, et al. 2005. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. Journal of Agricultural and Food Chemistry 53:3902−8 doi: 10.1021/jf050145v
CrossRef Google Scholar
|
[46]
|
Memariani Z, Abbas SQ, ul Hassan SS, Ahmadi A, Chabra A. 2021. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacological Research 171:105264 doi: 10.1016/j.phrs.2020.105264
CrossRef Google Scholar
|
[47]
|
Zhang Z, Zhang X, Bi K, He Y, Yan W, et al. 2021. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science & Technology 114:11−24 doi: 10.1016/j.jpgs.2021.05.023
CrossRef Google Scholar
|
[48]
|
Wojtunik-Kulesza K, Oniszczuk A, Oniszczuk T, Combrzyński M, Nowakowska D, Matwijczuk A. 2020. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols: A non-systematic review. Nutrients 12:1401 doi: 10.3390/nu12051401
CrossRef Google Scholar
|
[49]
|
Li Y, He D, Li B, Lund MN, Xing Y, et al. 2021. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends in Food Science & Technology 110:470−82 doi: 10.1016/j.jpgs.2021.02.009
CrossRef Google Scholar
|
[50]
|
Németh K, Plumb GW, Berrin JG, Juge N, Jacob R, et al. 2003. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. European Journal of Nutrition 42:29−42 doi: 10.1007/s00394-003-0397-3
CrossRef Google Scholar
|
[51]
|
Konishi Y, Zhao Z, Shimizu M. 2006. Phenolic acids are absorbed from the rat stomach with different absorption rates. Journal of Agricultural and Food Chemistry 54:7539−43 doi: 10.1021/jf061554+
CrossRef Google Scholar
|
[52]
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, et al. 2021. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2021.1946006
CrossRef Google Scholar
|
[53]
|
Chen L, Cao H, Huang Q, Xiao JB, Teng H. 2021. Absorption, metabolism and bioavailability of flavonoids: A review. Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2021.1917508
CrossRef Google Scholar
|
[54]
|
Pervin M, Unno K, Takagaki A, Isemura M, Nakamura Y. 2019. Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. International Journal of Molecular Sciences 20:3630 doi: 10.3390/ijms20153630
CrossRef Google Scholar
|
[55]
|
Rigacci S, Guidotti V, Bucciantini M, Nichino D, Relini A, et al. 2011. Aβ1-42 aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Current Alzheimer Research 8:841−52 doi: 10.2174/156720511798192682
CrossRef Google Scholar
|
[56]
|
Ferreira N, Saraiva MJ, Almeida MR. 2011. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Letters 585:2424−30 doi: 10.1016/j.febslet.2011.06.030
CrossRef Google Scholar
|
[57]
|
He J, Xing Y, Huang B, Zhang Y, Zeng C. 2009. Tea catechins induce the conversion of preformed lysozyme amyloid fibrils to amorphous aggregates. Journal of Agricultural and Food Chemistry 57:11391−96 doi: 10.1021/jf902664f
CrossRef Google Scholar
|
[58]
|
Thapa A, Woo ER, Chi EY, Sharoar MG, Jin H, et al. 2011. Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 50:2445−55 doi: 10.1021/bi101731d
CrossRef Google Scholar
|
[59]
|
Baba WN, McClements DJ, Maqsood S. 2021. Whey protein-polyphenol conjugates and complexes: Production, characterization, and applications. Food Chemistry 365:130455 doi: 10.1016/j.foodchem.2021.130455
CrossRef Google Scholar
|
[60]
|
Huang A, McClements DJ, Luo S, Chen T, Ye J, et al. 2022. Fabrication of rutin-protein complexes to form and stabilize bilayer emulsions: Impact of concentration and pretreatment. Food Hydrocolloids 122:107056 doi: 10.1016/j.foodhyd.2021.107056
CrossRef Google Scholar
|
[61]
|
Qie X, Chen W, Zeng M, Wang Z, Chen J, et al. 2021. Interaction between β-lactoglobulin and chlorogenic acid and its effect on antioxidant activity and thermal stability. Food Hydrocolloids 121:107059 doi: 10.1016/j.foodhyd.2021.107059
CrossRef Google Scholar
|
[62]
|
Li C, Dai T, Chen J, Li X, Li T, et al. 2021. Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin. Food Chemistry 339:128145 doi: 10.1016/j.foodchem.2020.128145
CrossRef Google Scholar
|
[63]
|
Lv Y, Liang Q, Li Y, Liu X, Zhang D, et al. 2022. Study of the binding mechanism between hydroxytyrosol and bovine serum albumin using multispectral and molecular docking. Food Hydrocolloids 122:107072 doi: 10.1016/j.foodhyd.2021.107072
CrossRef Google Scholar
|
[64]
|
Yan X, Gao Y, Liu S, Zhang G, Zhao J, et al. 2021. Covalent modification by phenolic extract improves the structural properties and antioxidant activities of the protein isolate from Cinnamomum camphora seed kernel. Food Chemistry 352:129377 doi: 10.1016/j.foodchem.2021.129377
CrossRef Google Scholar
|
[65]
|
Yildirim-Elikoglu S, Erdem YK. 2018. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Reviews International 34:665−97 doi: 10.1080/87559129.2017.1377225
CrossRef Google Scholar
|
[66]
|
Li T, Li X, Dai T, Hu P, Niu X, et al. 2020. Binding mechanism and antioxidant capacity of selected phenolic acid - β-casein complexes. Food Research International 129:108802 doi: 10.1016/j.foodres.2019.108802
CrossRef Google Scholar
|
[67]
|
Wang Q, Tang Y, Yang Y, Zhao J, Zhang Y, et al. 2020. Interaction between wheat gliadin and quercetin under different pH conditions analyzed by multi-spectroscopy methods. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 229:117937 doi: 10.1016/j.saa.2019.117937
CrossRef Google Scholar
|
[68]
|
Yang R, Tian J, Liu Y, Zhu L, Sun J, et al. 2021. Interaction mechanism of ferritin protein with chlorogenic acid and iron ion: The structure, iron redox, and polymerization evaluation. Food Chemistry 349:129144 doi: 10.1016/j.foodchem.2021.129144
CrossRef Google Scholar
|
[69]
|
Wang S, Li X, Zhu J, Liu H, Liu T, et al. 2021. Covalent interaction between high hydrostatic pressure-pretreated rice bran protein hydrolysates and ferulic acid: Focus on antioxidant activities and emulsifying properties. Journal of Agricultural and Food Chemistry 69:7777−85 doi: 10.1021/acs.jafc.1c01949
CrossRef Google Scholar
|
[70]
|
Li X, Li M, Zhang T, McClements DJ, Liu X, et al. 2021. Enzymatic and nonenzymatic conjugates of lactoferrin and (−)-epigallocatechin gallate: Formation, structure, functionality, and allergenicity. Journal of Agricultural and Food Chemistry 69:6291−302 doi: 10.1021/acs.jafc.1c01167
CrossRef Google Scholar
|
[71]
|
Xu Y, Han M, Huang M, Xu X. 2021. Enhanced heat stability and antioxidant activity of myofibrillar protein-dextran conjugate by the covalent adduction of polyphenols. Food Chemistry 352:129376 doi: 10.1016/j.foodchem.2021.129376
CrossRef Google Scholar
|
[72]
|
Liu X, Song Q, Li X, Chen Y, Liu C, et al. 2021. Effects of different dietary polyphenols on conformational changes and functional properties of protein-polyphenol covalent complexes. Food Chemistry 361:130071 doi: 10.1016/j.foodchem.2021.130071
CrossRef Google Scholar
|
[73]
|
Wu G, Hui X, Gong X, Tran KN, Stipkovits L, et al. 2021. Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends in Food Science & Technology 110:107−19 doi: 10.1016/j.jpgs.2021.01.072
CrossRef Google Scholar
|
[74]
|
Xu H, Lu Y, Zhang T, Liu K, Liu L, et al. 2019. Characterization of binding interactions of anthraquinones and bovine β-lactoglobulin. Food Chemistry 281:28−35 doi: 10.1016/j.foodchem.2018.12.077
CrossRef Google Scholar
|
[75]
|
Jing H, Huang X, Jiang C, Wang L, Du X, et al. 2021. Effects of tannic acid on the structure and proteolytic digestion of bovine lactoferrin. Food Hydrocolloids 117:106666 doi: 10.1016/j.foodhyd.2021.106666
CrossRef Google Scholar
|
[76]
|
Quan TH, Benjakul S, Sae-leaw T, Balange AK, Maqsood S. 2019. Protein-polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology 91:507−17 doi: 10.1016/j.jpgs.2019.07.049
CrossRef Google Scholar
|
[77]
|
Soares S, Brandão E, García-Estevez I, Fonseca F, Guerreiro C, et al. 2019. Interaction between ellagitannins and salivary proline-rich proteins. Journal of Agricultural and Food Chemistry 67:9579−90 doi: 10.1021/acs.jafc.9b02574
CrossRef Google Scholar
|
[78]
|
Zhang Q, Cheng Z, Chen R, Wang Y, Miao S, et al. 2021. Covalent and non-covalent interactions of cyanidin-3-O-glucoside with milk proteins revealed modifications in protein conformational structures, digestibility, and allergenic characteristics. Food & Function 12:10107−20 doi: 10.1039/d1fo01946e
CrossRef Google Scholar
|
[79]
|
Cong J, Cui J, Zhang H, Dzah CS, He Y, et al. 2020. Binding affinity, antioxidative capacity and in vitro digestion of complexes of grape seed procyanidins and pork, chicken and fish protein. Food Research International 136:109530 doi: 10.1016/j.foodres.2020.109530
CrossRef Google Scholar
|
[80]
|
Ma G, Tang C, Sun X, Zhang J. 2021. The interaction mechanism of β-casein with oligomeric proanthocyanidins and its effect on proanthocyanidin bioaccessibility. Food Hydrocolloids 113:106485 doi: 10.1016/j.foodhyd.2020.106485
CrossRef Google Scholar
|
[81]
|
Griffith JS. 1967. Nature of the Scrapie Agent: Self-replication and scrapie. Nature 215:1043−44 doi: 10.1038/2151043a0
CrossRef Google Scholar
|
[82]
|
Jarrett JT, Lansbury PT. 1993. Seeding "one-dimensional crystallization" of amyloid: A Pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73:1055−58 doi: 10.1016/0092-8674(93)90635-4
CrossRef Google Scholar
|
[83]
|
Sequeira IR, Poppitt SD. 2017. Unfolding novel mechanisms of polyphenol flavonoids for better glycaemic control: Targeting pancreatic islet amyloid polypeptide (IAPP). Nutrients 9:788 doi: 10.3390/nu9070788
CrossRef Google Scholar
|
[84]
|
Moreno-Gonzalez I, Edwards Iii G, Salvadores N, Shahnawaz M, Diaz-Espinoza R, et al. 2017. Molecular interaction between type 2 diabetes and Alzheimer's disease through cross-seeding of protein misfolding. Molecular Psychiatry 22:1327−34 doi: 10.1038/mp.2016.230
CrossRef Google Scholar
|
[85]
|
Akbari A, Bamdad F, Wu J. 2018. Chaperone-like food components: from basic concepts to food applications. Food & Function 9:3597−609 doi: 10.1039/c7fo01902e
CrossRef Google Scholar
|
[86]
|
Adamcik J, Mezzenga R. 2018. Amyloid polymorphism in the protein folding and aggregation energy landscape. Angewandte Chemie - International Edition 57:8370−82 doi: 10.1002/anie.201713416
CrossRef Google Scholar
|
[87]
|
Knowles TPJ, Vendruscolo M, Dobson CM. 2014. The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology 15:384−96 doi: 10.1038/nrm3810
CrossRef Google Scholar
|
[88]
|
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. 2013. Molecular chaperone functions in protein folding and proteostasis. Annual Review of Biochemistry 82:323−55 doi: 10.1146/annurev-biochem-060208-092442
CrossRef Google Scholar
|
[89]
|
Doyle SM, Genest O, Wickner S. 2013. Protein rescue from aggregates by powerful molecular chaperone machines. Nature Reviews Molecular Cell Biology 14:617−29 doi: 10.1038/nrm3660
CrossRef Google Scholar
|
[90]
|
Soto C. 2003. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience 4:49−60 doi: 10.1038/nrn1007
CrossRef Google Scholar
|
[91]
|
Duyckaerts C, Delatour B, Potier MC. 2009. Classification and basic pathology of Alzheimer disease. Acta Neuropathologica 118:5−36 doi: 10.1007/s00401-009-0532-1
CrossRef Google Scholar
|
[92]
|
Dhouafli Z, Cuanalo-Contreras K, Hayouni EA, Mays CE, Soto C, et al. 2018. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cellular and Molecular Life Sciences 75:3521−38 doi: 10.1007/s00018-018-2872-2
CrossRef Google Scholar
|
[93]
|
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, et al. 2020. Cerebral amyloid angiopathy and Alzheimer disease-one peptide, two pathways. Nature Reviews Neurology 16:30−42 doi: 10.1038/s41582-019-0281-2
CrossRef Google Scholar
|
[94]
|
Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. 2014. Tau protein modifications and interactions: Their role in function and dysfunction. International Journal of Molecular Sciences 15:4671−713 doi: 10.3390/ijms15034671
CrossRef Google Scholar
|
[95]
|
Dolan PJ, Johnson GVW. 2010. The role of tau kinases in Alzheimer's disease. Current Opinion in Drug Discovery & Development 13:595−603
Google Scholar
|
[96]
|
Bocci T, Prenassi M, Arlotti M, Cogiamanian FM, Borrellini L, et al. 2021. Eight-hours conventional versus adaptive deep brain stimulation of the subthalamic nucleus in Parkinson's disease. NPJ Parkinson's Disease 7:88 doi: 10.1038/s41531-021-00229-z
CrossRef Google Scholar
|
[97]
|
Freyssin A, Page G, Fauconneau B, Rioux Bilan A. 2018. Natural polyphenols effects on protein aggregates in Alzheimer's and Parkinson's prion-like diseases. Neural Regeneration Research 13:955−61 doi: 10.4103/1673-5374.233432
CrossRef Google Scholar
|
[98]
|
Jellinger KA. 2021. Morphological differences between dementia with Lewy bodies and Parkinson's disease-dementia. Neuropathology and Applied Neurobiology In Press doi: 10.1111/nan.12708
CrossRef Google Scholar
|
[99]
|
Tanudjojo B, Shaikh SS, Fenyi A, Bousset L, Agarwal D, et al. 2021. Phenotypic manifestation of α-synuclein strains derived from Parkinson's disease and multiple system atrophy in human dopaminergic neurons. Nature Communications 12:3817 doi: 10.1038/s41467-021-23682-z
CrossRef Google Scholar
|
[100]
|
Xie Y, Zhou C, Zhou Z, Hong J, Che M, et al. 2010. Interaction with synphilin-1 promotes inclusion formation of α-synuclein: mechanistic insights and pathological implication. FASEB Journal 24:196−205 doi: 10.1096/fj.09-133082
CrossRef Google Scholar
|
[101]
|
Perreault L, Skyler JS, Rosenstock J. 2021. Novel therapies with precision mechanisms for type 2 diabetes mellitus. Nature Reviews Endocrinology 17:364−77 doi: 10.1038/s41574-021-00489-y
CrossRef Google Scholar
|
[102]
|
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, et al. 2019. Plant extracts and phytochemicals targeting α-synuclein aggregation in Parkinson's disease models. Frontiers in Pharmacology 9:1555 doi: 10.3389/fphar.2018.01555
CrossRef Google Scholar
|
[103]
|
Shimazu R, Anada M, Miyaguchi A, Nomi Y, Matsumoto H. 2021. Evaluation of blood-brain barrier permeability of polyphenols, anthocyanins, and their metabolites. Journal of Agricultural and Food Chemistry 69:11676−86 doi: 10.1021/acs.jafc.1c02898
CrossRef Google Scholar
|
[104]
|
Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. 2021. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases. Frontiers in Neuroscience 15:718188 doi: 10.3389/fnins.2021.718188
CrossRef Google Scholar
|
[105]
|
Kim E, Hwang K, Lee J, Han S, Kim EM, et al. 2018. Skin protective effect of epigallocatechin gallate. International Journal of Molecular Sciences 19:173 doi: 10.3390/ijms19010173
CrossRef Google Scholar
|
[106]
|
Yang Y, Zhang T. 2019. Antimicrobial activities of tea polyphenol on phytopathogens: A review. Molecules 24:816 doi: 10.3390/molecules24040816
CrossRef Google Scholar
|
[107]
|
Dai W, Ruan C, Zhang Y, Wang J, Han J, et al. 2020. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. Journal of Functional Foods 65:103732 doi: 10.1016/j.jff.2019.103732
CrossRef Google Scholar
|
[108]
|
Palhano FL, Lee J, Grimster NP, Kelly JW. 2013. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. Journal of the American Chemical Society 135:7503−10 doi: 10.1021/ja3115696
CrossRef Google Scholar
|
[109]
|
Cai Z, Li X, Liang J, Xiang L, Wang K, et al. 2018. Bioavailability of tea catechins and its improvement. Molecules 23:2346 doi: 10.3390/molecules23092346
CrossRef Google Scholar
|
[110]
|
Prasanna G, Jing P. 2021. Polyphenol binding disassembles glycation-modified bovine serum albumin amyloid fibrils. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 246:119001 doi: 10.1016/j.saa.2020.119001
CrossRef Google Scholar
|
[111]
|
Gancar M, Kurin E, Bednarikova Z, Marek J, Mucaji P, et al. 2020. Amyloid aggregation of insulin: An interaction study of green tea constituents. Scientific Reports 10:9115 doi: 10.1038/s41598-020-66033-6
CrossRef Google Scholar
|
[112]
|
An T, Feng S, Zeng C. 2017. Oxidized epigallocatechin gallate inhibited lysozyme fibrillation more strongly than the native form. Redox Biology 11:315−21 doi: 10.1016/j.redox.2016.12.016
CrossRef Google Scholar
|
[113]
|
Wobst HJ, Sharma A, Diamond MI, Wanker EE, Bieschke J. 2015. The green tea polyphenol (−)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Letters 589:77−83 doi: 10.1016/j.febslet.2014.11.026
CrossRef Google Scholar
|
[114]
|
Kan Z, Wang Y, Chen Q, Tang X, Thompson HJ, et al. 2021. Front Cover: Green tea suppresses amyloid β levels and alleviates cognitive impairment by inhibiting APP cleavage and preventing neurotoxicity in 5XFAD mice. Molecular Nutrition & Food Research 65:2100626 doi: 10.1002/mnfr.202170051
CrossRef Google Scholar
|
[115]
|
Stefani M, Rigacci S. 2013. Protein folding and aggregation into amyloid: The interference by natural phenolic compounds. International Journal of Molecular Sciences 14:12411−57 doi: 10.3390/ijms140612411
CrossRef Google Scholar
|
[116]
|
Doytchinova I, Atanasova M, Salamanova E, Ivanov S, Dimitrov I. 2020. Curcumin inhibits the primary nucleation of amyloid-beta peptide: A molecular dynamics study. Biomolecules 10:1323 doi: 10.3390/biom10091323
CrossRef Google Scholar
|
[117]
|
Tavanti F, Pedone A, Menziani MC. 2020. Insights into the effect of curcumin and (–)-epigallocatechin-3-gallate on the aggregation of Aβ1-40 monomers by means of molecular dynamics. International Journal of Molecular Sciences 21:5462 doi: 10.3390/ijms21155462
CrossRef Google Scholar
|
[118]
|
Radbakhsh S, Barreto GE, Bland AR, Sahebkar A. 2021. Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors 47:570−86 doi: 10.1002/biof.1735
CrossRef Google Scholar
|
[119]
|
Zaidi FK, Bhat R. 2020. Two polyphenols with diverse mechanisms towards amyloidosis: differential modulation of the fibrillation pathway of human lysozyme by curcumin and EGCG. Journal of Biomolecular Structure and Dynamics doi: 10.1080/07391102.2020.1860824
CrossRef Google Scholar
|
[120]
|
Cui L, Wang S, Zhang J, Wang M, Gao Y, et al. 2019. Effect of curcumin derivatives on hen egg white lysozyme amyloid fibrillation and their interaction study by spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 223:117365 doi: 10.1016/j.saa.2019.117365
CrossRef Google Scholar
|
[121]
|
Daval M, Bedrood S, Gurlo T, Huang CJ, Costes S, et al. 2010. The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity. Amyloid-Journal of Protein Folding Disorders 17:118−28 doi: 10.3109/13506129.2010.530008
CrossRef Google Scholar
|