[1]
|
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemmistry 72:21−34 doi: 10.1016/j.plaphy.2013.02.001
CrossRef Google Scholar
|
[2]
|
Andersen JR, Zein I, Wenzel G, Darnhofer B, Eder J, et al. 2008. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds. BMC Plant Biology 8:2 doi: 10.1186/1471-2229-8-2
CrossRef Google Scholar
|
[3]
|
Hoang VL, Innes DJ, Shaw PN, Monteith GR, Gidley MJ, et al. 2015. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genomics 16:561 doi: 10.1186/s12864-015-1784-x
CrossRef Google Scholar
|
[4]
|
Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T. 2003. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Current Biology 13:421−26 doi: 10.1016/S0960-9822(03)00106-4
CrossRef Google Scholar
|
[5]
|
Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, et al. 2009. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genetics 5:e1000777 doi: 10.1371/journal.pgen.1000777
CrossRef Google Scholar
|
[6]
|
Huang J, Zhang C, Zhao X, Fei Z, Wan K, et al. 2016. The Jujube Genome Provides Insights into Genome Evolution and the Domestication of Sweetness/Acidity Taste in Fruit Trees. PLoS Genetics 12:e1006433 doi: 10.1371/journal.pgen.1006433
CrossRef Google Scholar
|
[7]
|
Huang X, Kurata N, Wei X, Wang ZX, Wang A, et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497−501 doi: 10.1038/nature11532
CrossRef Google Scholar
|
[8]
|
Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia JM, et al. 2012. Comparative population genomics of maize domestication and improvement. Nature Genetics 44:808−11 doi: 10.1038/ng.2309
CrossRef Google Scholar
|
[9]
|
Lei Y, Yang L, Duan S, Ning S, Li D, et al. 2022. Whole-genome resequencing reveals the origin of tea in Lincang. Frontiers in Plant Science 13:984422 doi: 10.3389/fpls.2022.984422
CrossRef Google Scholar
|
[10]
|
Ren G, Zhang X, Li Y, Ridout K, Serrano-Serrano ML, et al. 2021. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Science Advances 7:eabg2286 doi: 10.1126/sciadv.abg2286
CrossRef Google Scholar
|
[11]
|
Zhao H, Sun S, Ding Y, Wang Y, Yue X, et al. 2021. Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits. Nature Communications 12:5466 doi: 10.1038/s41467-021-25795-x
CrossRef Google Scholar
|
[12]
|
Kaeppler SM, Kaeppler HF, Rhee Y. 2000. Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology 43:179−88 doi: 10.1023/A:1006423110134
CrossRef Google Scholar
|
[13]
|
Iwasaki M, Paszkowski J. 2014. Epigenetic memory in plants. The EMBO Journal 33:1987−98 doi: 10.15252/embj.201488883
CrossRef Google Scholar
|
[14]
|
Jones MJ, Goodman SJ, Kobor MS. 2015. DNA methylation and healthy human aging. Aging Cell 14:924−32 doi: 10.1111/acel.12349
CrossRef Google Scholar
|
[15]
|
Kulis M, Esteller M. 2010. DNA methylation and cancer. Advances in Genetics 70:27−56 doi: 10.1016/B978-0-12-380866-0.60002-2
CrossRef Google Scholar
|
[16]
|
Weber M, Schübeler D. 2007. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Current Opinion in Cell Biology 19:273−80 doi: 10.1016/j.ceb.2007.04.011
CrossRef Google Scholar
|
[17]
|
Lin L, Wang S, Zhang J, Song X, Zhang D, et al. 2022. Integrative analysis of transcriptome and metabolome reveals the effect of DNA methylation of chalcone isomerase gene in promoter region on Lithocarpus polystachyus Rehd flavonoids. Synthetic and Systems Biotechnology 7:928−40 doi: 10.1016/j.synbio.2022.05.003
CrossRef Google Scholar
|
[18]
|
Strygina K, Khlestkina E. 2022. Flavonoid biosynthesis genes in Triticum aestivum L.: methylation patterns in cis-regulatory regions of the duplicated CHI and F3H genes. Biomolecules 12:689 doi: 10.3390/biom12050689
CrossRef Google Scholar
|
[19]
|
Jia H, Jia H, Lu S, Zhang Z, Su Z, et al. 2022. DNA and histone methylation regulates different types of fruit ripening by transcriptome and proteome analyses. Journal of Agricultural and Food Chemistry 70:3541−56 doi: 10.1021/acs.jafc.1c06391
CrossRef Google Scholar
|
[20]
|
An YQC, Goettel W, Han Q, Bartels A, Liu Z, et al. 2017. Dynamic changes of genome-wide DNA methylation during soybean seed development. Scientific Reports 7:12263 doi: 10.1038/s41598-017-12510-4
CrossRef Google Scholar
|
[21]
|
Huang H, Liu R, Niu Q, Tang K, Zhang B, et al. 2019. Global increase in DNA methylation during orange fruit development and ripening. Proceedings of the National Academy of Sciences of the United States of America 116:1430−36 doi: 10.1073/pnas.1815441116
CrossRef Google Scholar
|
[22]
|
Povilus RA, Friedman WE. 2022. Transcriptomes across fertilization and seed development in the water lily Nymphaea thermarum (Nymphaeales): evidence for epigenetic patterning during reproduction. Plant Reproduction 35:161−78 doi: 10.1007/s00497-022-00438-3
CrossRef Google Scholar
|
[23]
|
Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, et al. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92−94 doi: 10.1126/science.1180677
CrossRef Google Scholar
|
[24]
|
Kiefer C, Willing EM, Jiao WB, Sun H, Piednoël M, et al. 2019. Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. Nature Plants 5:846−55 doi: 10.1038/s41477-019-0486-9
CrossRef Google Scholar
|
[25]
|
Xue Y, Shi Y, Qi Y, Yu H, Zou C, et al. 2022. Epigenetic and Genetic Contribution for Expression Bias of Homologous Alleles in Polyploid Sugarcane. Agronomy 12:2852 doi: 10.3390/agronomy12112852
CrossRef Google Scholar
|
[26]
|
Zhong Z, Feng S, Mansfeld BN, Ke Y, Qi W, et al. 2023. Haplotype-resolved DNA methylome of African cassava genome. Plant Biotech nology Journal 21:247−49 doi: 10.1111/pbi.13955
CrossRef Google Scholar
|
[27]
|
Becker C, Hagmann J, Müller J, Koenig D, Stegle O, et al. 2011. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245−49 doi: 10.1038/nature10555
CrossRef Google Scholar
|
[28]
|
He L, Xu X, Li Y, Li C, Zhu Y, et al. 2013. Transcriptome analysis of buds and leaves using 454 pyrosequencing to discover genes associated with the biosynthesis of active ingredients in Lonicera japonica Thunb. PLoS One 8:e62922 doi: 10.1371/journal.pone.0062922
CrossRef Google Scholar
|
[29]
|
Liu T, Yang J, Liu S, Zhao Y, Zhou J, et al. 2020. Regulation of chlorogenic acid, flavonoid, and iridoid biosynthesis by histone H3K4 and H3K9 methylation in Lonicera japonica. Molecular Biology Reports 47:9301−11 doi: 10.1007/s11033-020-05990-7
CrossRef Google Scholar
|
[30]
|
Huang W, Xiong L, Zhang L, Zhang F, Han X, et al. 2022. Study on content variation of flavonoids in different germplasm during development of Lonicerae Japonicae Flos. Chinese Traditional and Herbal Drugs 53:3156−64 doi: 10.7501/j.issn.0253-2670.2022.10.026
CrossRef Google Scholar
|
[31]
|
Yu H, Cui N, Guo K, Xu W, Wang H. 2023. Epigenetic changes in the regulation of carotenoid metabolism during honeysuckle flower development. Horticultural Plant Journal 9:577−88 doi: 10.1016/j.hpj.2022.11.003
CrossRef Google Scholar
|
[32]
|
Yu H, Guo K, Lai K, Shah MA, Xu Z, et al. 2022. Chromosome-scale genome assembly of an important medicinal plant honeysuckle. Scientific Data 9:226 doi: 10.1038/s41597-022-01385-4
CrossRef Google Scholar
|
[33]
|
Xanthopoulou A, Manioudaki M, Bazakos C, Kissoudis C, Farsakoglou AM, et al. 2020. Whole genome re-sequencing of sweet cherry (Prunus avium L.) yields insights into genomic diversity of a fruit species. Horticulture Research 7:60 doi: 10.1038/s41438-020-0281-9
CrossRef Google Scholar
|
[34]
|
Xu Q, Wu L, Luo Z, Zhang M, Lai J, et al. 2022. DNA demethylation affects imprinted gene expression in maize endosperm. Genome Biology 23:77 doi: 10.1186/s13059-022-02641-x
CrossRef Google Scholar
|
[35]
|
Wang ZH, Zhang D, Bai Y, Zhang YH, Liu Y, et al. 2013. Genomewide variation in an introgression line of rice-Zizania revealed by whole-genome re-sequencing. PLoS One 8:e74479 doi: 10.1371/journal.pone.0074479
CrossRef Google Scholar
|
[36]
|
Wang H, Beyene G, Zhai J, Feng S, Fahlgren N, et al. 2015. CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proceedings of the National Academy of Sciences of the United States of America 112:13729−34 doi: 10.1073/pnas.1519067112
CrossRef Google Scholar
|
[37]
|
Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, et al. 2013. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Research 23:628−37 doi: 10.1101/gr.146985.112
CrossRef Google Scholar
|
[38]
|
Schmitz RJ, He Y, Valdés-López O, Khan SM, Joshi T, et al. 2013. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Research 23:1663−74 doi: 10.1101/gr.152538.112
CrossRef Google Scholar
|
[39]
|
Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, et al. 2011. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369−73 doi: 10.1126/science.1212959
CrossRef Google Scholar
|
[40]
|
Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM. 2014. Flavonoid–metal ion complexes: a novel class of therapeutic agents. Medicinal Research Reviews 34:677−702 doi: 10.1002/med.21301
CrossRef Google Scholar
|
[41]
|
Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, et al. 2013. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology 31:154−59 doi: 10.1038/nbt.2462
CrossRef Google Scholar
|
[42]
|
Zheng X, Wang T, Cheng T, Zhao L, Zheng X, et al. 2022. Genomic variation reveals demographic history and biological adaptation of the ancient relictual, lotus (Nelumbo Adans). Horticulture Research 9:uhac029 doi: 10.1093/hr/uhac029
CrossRef Google Scholar
|
[43]
|
Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. 2008. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125−29 doi: 10.1038/nature07324
CrossRef Google Scholar
|
[44]
|
Bewick AJ, Ji L, Niederhuth CE, Willing EM, Hofmeister BT, et al. 2016. On the origin and evolutionary consequences of gene body DNA methylation. Proceedings of the National Academy of Sciences of the United States of America 113:9111−16 doi: 10.1073/pnas.1604666113
CrossRef Google Scholar
|
[45]
|
Kim KD, El Baidouri M, Abernathy B, Iwata-Otsubo A, Chavarro C, et al. 2015. A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean. Plant Physiology 168:1433−47 doi: 10.1104/pp.15.00408
CrossRef Google Scholar
|
[46]
|
Wang ZL, Wang S, Kuang Y, Hu ZM, Qiao X, Ye M. 2018. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharmaceutical Biology 56:465−84 doi: 10.1080/13880209.2018.1492620
CrossRef Google Scholar
|
[47]
|
Ji H, Shin Y, Lee C, Oh H, Yoon IS, et al. 2021. Genomic Variation in Korean japonica Rice Varieties. Genes 12:1749 doi: 10.3390/genes12111749
CrossRef Google Scholar
|
[48]
|
Li R, Maioli A, Lanteri S, Moglia A, Bai Y, et al. 2023. Genomic analysis highlights putative defective susceptibility genes in tomato germplasm. Plants 12:2289 doi: 10.3390/plants12122289
CrossRef Google Scholar
|
[49]
|
Skarzyńska A, Pawełkowicz M, Pląder W. 2021. Influence of transgenesis on genome variability in cucumber lines with a thaumatin II gene. Physiology and Molecular Biology of Plants 27:985−96 doi: 10.1007/s12298-021-00990-8
CrossRef Google Scholar
|
[50]
|
Cui Y, Ge Q, Zhao P, Chen W, Sang X, et al. 2021. Rapid mining of candidate genes for verticillium wilt resistance in cotton based on BSA-Seq analysis. Frontiers in Plant Science 12:703011 doi: 10.3389/fpls.2021.703011
CrossRef Google Scholar
|
[51]
|
Mas-Gómez J, Cantín CM, Moreno MÁ, Martínez-García PJ. 2022. Genetic diversity and genome-wide association study of morphological and quality traits in peach using two Spanish peach germplasm collections. Frontiers in Plant Science 13:854770 doi: 10.3389/fpls.2022.854770
CrossRef Google Scholar
|
[52]
|
Eichten SR, Stuart T, Srivastava A, Lister R, Borevitz JO. 2016. DNA methylation profiles of diverse Brachypodium distachyon align with underlying genetic diversity. Genome Research 26:1520−31 doi: 10.1101/gr.205468.116
CrossRef Google Scholar
|
[53]
|
Hu W, Ji C, Shi H, Liang Z, Ding Z, et al. 2021. Allele-defined genome reveals biallelic differentiation during cassava evolution. Molecular Plant 14:851−54 doi: 10.1016/j.molp.2021.04.009
CrossRef Google Scholar
|
[54]
|
Yin YC, Zhang XD, Gao ZQ, Hu T, Liu Y. 2019. The research progress of chalcone isomerase (CHI) in plants. Molecular Biotechnology 61:32−52 doi: 10.1007/s12033-018-0130-3
CrossRef Google Scholar
|
[55]
|
Jiang W, Yin Q, Wu R, Zheng G, Liu J, et al. 2015. Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana. Journal of Experimental Botany 66:7165−79 doi: 10.1093/jxb/erv413
CrossRef Google Scholar
|
[56]
|
Wang M, Zhang Y, Zhu C, Yao X, Zheng Z, et al. 2021. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. Plant Physiology 172:1966−82 doi: 10.1111/ppl.13407
CrossRef Google Scholar
|
[57]
|
Jia D, Li Z, Dang Q, Shang L, Shen J, et al. 2020. Anthocyanin biosynthesis and methylation of the MdMYB10 promoter are associated with the red blushed-skin mutant in the red striped-skin "Changfu 2" apple. Journal of Agricultural and Food Chemistry 68:4292−304 doi: 10.1021/acs.jafc.9b07098
CrossRef Google Scholar
|
[58]
|
Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, et al. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology 19:470−74 doi: 10.1038/88150
CrossRef Google Scholar
|
[59]
|
Yuan Y, Zuo J, Zhang H, Li R, Yu M, et al. 2022. Integration of Transcriptome and Metabolome Provides New Insights to Flavonoids Biosynthesis in Dendrobium huoshanense. Frontiers in Plant Science 13:850090 doi: 10.3389/fpls.2022.850090
CrossRef Google Scholar
|
[60]
|
Schilbert HM, Schöne M, Baier T, Busche M, Viehöver P, et al. 2021. Characterization of the Brassica napus Flavonol Synthase Gene Family Reveals Bifunctional Flavonol Synthases. Frontiers in Plant Science 12:733762 doi: 10.3389/fpls.2021.733762
CrossRef Google Scholar
|