-
The spinach used in the experiment was purchased from the vegetable market of China Agricultural University (Beijing, China). The extraction and purification method for Chl referenced the method of Cao et al.[4] with slight modifications. Fresh spinach was weighed to 200 g after removing stems and veins. The weighed spinach was put in a blender, and 200 mL of anhydrous ethanol and 400 mL of petroleum ether were added. The mixture was blended for 5 min to achieve a uniform viscous liquid consistency. The blended sample was then subjected to cold centrifugation at 4 °C and 8,000× g for 10 min. The supernatant was collected and filtered. The filtrate was transferred to a separating funnel, and an equal volume of water was added. The mixture was shaken and allowed to separate. The lower aqueous phase (ethanol-water mixture) was removed, while the upper organic phase (petroleum ether layer) was retained. This washing step was repeated two more times with equal volumes of water. After collecting the organic phase, it was dried using anhydrous sodium sulfate and filtered. The sample was then transferred to a rotary evaporator and evaporated at 36 °C until the remaining volume was approximately 200 mL, resulting in crude Chl extract. The crude Chl extract was subjected to column chromatography using neutral alumina as the stationary phase. The elution was performed sequentially using petroleum ether-acetone (v:v = 9:1), petroleum ether-acetone (v:v = 7:3), and n-butanol-ethanol-water (v:v:v = 3:1:1) as eluents to separate and elute carotenoids, xanthophylls, and Chl. The eluted Chl fraction (purity 86.6%) was collected and kept for further use.
Experimental program
-
The β-Car used in this study was of analytical grade and purchased from Shanghai Yuanye Biotechnology Co., Ltd (Shanghai, China). For the whole experiment, Chl and β-Car were mixed in an ethanol solution to create samples A, B, C, D, E, and F, with a constant Chl concentration of 19.93 mg/L and β-Car concentrations of 1.20, 2.40, 3.60, 4.80, 6.00, and 7.20 mg/L, respectively. Two control samples, G (Chl 19.93 mg/L) and H (β-Car 3.60 mg/L), were also prepared. These eight samples were subsequently placed at room temperature, with the experimental environment maintaining a constant light intensity of approximately 2,000 lux for 24 h a day. Changes in the indicators on the 7th day and the 70th day of the light treatment were recorded. Among them, the data from the 7th day was used to analyze the protective phenomenon of Car on Chl, while the data from the 70th day was employed to analyze the mechanism of Car's protective effect on Chl.
Determination of Chl content
-
The Chl content was determined based on Toprak’s method with minor modifications[20]. After the Chl sample had been appropriately diluted, 200 μL was poured into a 96-well plate, and the absorbance was measured at 645 and 663 nm using a spectrophotometer (SpectraMax iD5, Molecular Devices, USA). All experiments were conducted under light-shielded conditions. Based on the absorbance, the chlorophyll content was calculated using the following formula:
$ \rm Chl\;concentration\;(mg/L):C=8.04\times A_{ {663}}+ 20.29\times A_{ {645}} $ (1) Determination of fluorescence spectrum
-
The fluorescence measurements of the Chl solution were conducted using a spectrophotometer (SpectraMax iD5, Molecular Devices, USA). The fluorescence measurement protocol followed the conclusions of research by Li et al.[21], where excitation was performed at 393 nm, and the fluorescence emission spectrum was measured between 550 and 850 nm. All measurements were performed in a 96-well plate at room temperature. The slit width of the spectrophotometer was set at 20 nm.
Infrared spectrum detection
-
The Chl and β-Car were mixed to obtain sample A, with Chl concentration at 20.00 mg/L and β-Car concentration at 7.20 mg/L. Samples B (Chl 20.00 mg/L) and C (Car 7.20 mg/L) were also prepared as controls. Infrared detection was performed on these three sample groups. 100 mg of potassium bromide was taken and ground evenly. It was then pressed into a pellet at a pressure of 20 MPa, and the infrared background was measured. Afterward, 1 mg of the sample was collected with a capillary tube and spread onto the pressed potassium bromide pellet. The coated samples were left to air-dry naturally and were coated 2−3 more times and dried again. After that, the samples were directly subjected to infrared testing using the iS10 FT-IR spectrometer from Thermo Fisher Scientific, USA. The spectral range was set from 400 to 4,000 cm−1. The spectrometer had a resolution of 4 cm−1, a signal-to-noise ratio of 50,000:1, and was scanned 32 times.
Quantum chemical calculations and wave function analysis
-
The molecular structure’s geometric optimization and excited state calculations were performed using Gaussian 16 (A.03) software[22]. In this research, quantum chemical calculations were performed using Density Functional Theory (DFT) in combination with Time-Dependent Density Functional Theory (TD-DFT). The geometric optimization and frequency calculations were carried out using the B3LYP-D3(BJ) functional in combination with the 6-31G(d) basis set. The optimized structures obtained did not exhibit any imaginary frequencies, indicating they were at true energy minima. For the excited state calculations, the CAM-B3LYP-D3(BJ) functional combined with the 6-311G(d,p) basis set was employed. During the quantum chemical calculations of the infrared spectra, using a correction factor of 0.9614 was considered to refine the results at the B3LYP/6-31G* level[23]. The atomic dipole moment correction using Hirshfeld (ADCH) population analysis, hole-electron analysis, and independent gradient model (IGM) analysis was performed using Multiwfn 3.8 software[24,25]. The molecular structure and spectra were visualized using GaussView 6.0 software.
Statistical analysis
-
The experimental data are presented as the mean ± standard deviation of triplicate readings. The data were subjected to analysis using the Analysis of Variance (ANOVA) function in the SPSS Statistics 21 software. A significance level of p = 0.05 is employed, whereby p < 0.05 indicates a significant difference. For data visualization and graphing, Origin 2018 software was employed.
-
The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.
-
About this article
Cite this article
Li F, Shen S, Yang Z, Zhang J, Ibrahim AN, et al. 2024. Protection mechanism of β-carotene on the chlorophyll photostability through aggregation: a quantum chemical perspective. Food Innovation and Advances 3(3): 222−231 doi: 10.48130/fia-0024-0021
Protection mechanism of β-carotene on the chlorophyll photostability through aggregation: a quantum chemical perspective
- Received: 10 April 2024
- Revised: 02 June 2024
- Accepted: 19 June 2024
- Published online: 18 July 2024
Abstract: Chlorophyll (Chl), the most widely distributed natural pigment in nature, is limited in use due to its poor stability. This study refers to the aggregation structure of Chl and carotene (Car) in natural photosynthetic systems, hoping to improve the photostability of Chl by constructing Chl/Car aggregates. The stability protection effect of Car on Chl was explored by designing different ratios of Chl and Car aggregation systems. The configuration of Chl/Car aggregates was optimized through ab initio molecular dynamics, and the aggregation mechanism of the aggregates and the photoprotection mechanism of Chl by Car were elucidated through quantum chemical calculations and wave function analysis. Chl/Car had a 27.22% higher Chl retention rate than free Chl after 7 d of illumination, with a Chl to Car ratio of 1.66:1. A configuration of the Chl/Car aggregates which Car's conjugated olefin chain interacts extensively with the porphyrin ring and bent phytyl chain of Chl made them more stable. The photoprotective mechanism of Car on Chl in the Chl/Car aggregates is elucidated. Car's conjugated polyene chain provides HOMO orbitals to the Chl/Car aggregates. It demonstrated that Car supplies electrons in the low-lying excited states S2 and S4, indicating it is more susceptible to damage, protecting Chl. This research will promote the development of natural color formulas and ensure the health of consumers.
-
Key words:
- Chlorophyll /
- β-Carotene /
- Aggregation /
- Photostability /
- Pigment