[1]
|
Yu H, Qiu JF, Ma LJ, Hu YJ, Li P, et al. 2017. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food and Chemical Toxicology 108:375−91 doi: 10.1016/j.fct.2016.11.023
CrossRef Google Scholar
|
[2]
|
Martinetti L, Ferrante A, Bassoli A, Borgonovo G, Tosca A, et al. 2012. Characterization of some qualitative traits in different perilla cultivars. Acta Horticulturae 939:301−8 doi: 10.17660/actahortic.2012.939.39
CrossRef Google Scholar
|
[3]
|
Ahmed HM. 2018. Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules 24(1):102 doi: 10.3390/molecules24010102
CrossRef Google Scholar
|
[4]
|
Wu X, Dong S, Chen H, Guo M, Sun Z, et al. 2023. Perilla frutescens: A traditional medicine and food homologous plant. Chinese Herbal Medicines 15:369−75 doi: 10.1016/j.chmed.2023.03.002
CrossRef Google Scholar
|
[5]
|
Mungmai L, Preedalikit W, Pintha K, Tantipaiboonwong P, Aunsri N. 2020. Collagenase and melanogenesis inhibitory effects of Perilla Frutescens pomace extract and its efficacy in topical cosmetic formulations. Cosmetics 7:69 doi: 10.3390/cosmetics7030069
CrossRef Google Scholar
|
[6]
|
Erhunmwunsee F, Pan C, Yang K, Li Y, Liu M, et al. 2022. Recent development in biological activities and safety concerns of perillaldehyde from perilla plants: A review. Critical Reviews in Food Science and Nutrition 62:6328−40 doi: 10.1080/10408398.2021.1900060
CrossRef Google Scholar
|
[7]
|
Ito M, Honda G, Sydara K. 2008. Perilla frutescens var. frutescens in northern Laos. Journal of Natural Medicines 62:251−58 doi: 10.1007/s11418-007-0213-0
CrossRef Google Scholar
|
[8]
|
Baba M, Yamada KI, Ito M. 2020. Cloning and Expression of a Perilla frutescens cytochrome P450 enzyme catalyzing the hydroxylation of phenylpropenes. Plants 9:577 doi: 10.3390/plants9050577
CrossRef Google Scholar
|
[9]
|
Michiho I, Mariko T, Gisho H. 1999. Chemical Composition of the Essential oil of Perilla frutescens. Natural Medicines 53:32−36
Google Scholar
|
[10]
|
Müller-Waldeck F, Sitzmann J, Schnitzler WH, Graßmann J. 2010. Determination of toxic perilla ketone, secondary plant metabolites and antioxidative capacity in five Perilla frutescens L. varieties. Food and Chemical Toxicology 48:264−70 doi: 10.1016/j.fct.2009.10.009
CrossRef Google Scholar
|
[11]
|
Sato-Masumoto N, Ito M. 2014. Two types of alcohol dehydrogenase from Perilla can form citral and perillaldehyde. Phytochemistry 104:12−20 doi: 10.1016/j.phytochem.2014.04.019
CrossRef Google Scholar
|
[12]
|
Masumoto N, Korin M, Ito M. 2010. Geraniol and linalool synthases from wild species of perilla. Phytochemistry 71:1068−75 doi: 10.1016/j.phytochem.2010.04.006
CrossRef Google Scholar
|
[13]
|
Chen W, Viljoen AM. 2010. Geraniol — A review of a commercially important fragrance material. South African Journal of Botany 76:643−51 doi: 10.1016/j.sajb.2010.05.008
CrossRef Google Scholar
|
[14]
|
Dudai N, Segey D, Haykin-Frenkel D, Eshel A. 2006. Genetic variation of phenolic compounds content, essential oil composition and anti oxidative activity in Israel-grown Mentha longifolia L. Acta Horticulturae 709:69−78 doi: 10.17660/actahortic.2006.709.8
CrossRef Google Scholar
|
[15]
|
Lange BM, Srividya N. 2019. Enzymology of monoterpene functionalization in glandular trichomes. Journal of Experimental Botany 70:1095−108 doi: 10.1093/jxb/ery436
CrossRef Google Scholar
|
[16]
|
Vranová E, Coman D, Gruissem W. 2013. Network Analysis of the MVA and MEP Pathways for Isoprenoid Synthesis. Annual Review of Plant Biology 64:665−700 doi: 10.1146/annurev-arplant-050312-120116
CrossRef Google Scholar
|
[17]
|
Zebec Z, Wilkes J, Jervis AJ, Scrutton NS, Takano E, et al. 2016. Towards synthesis of monoterpenes and derivatives using synthetic biology. Current Opinion in Chemical Biology 34:37−43 doi: 10.1016/j.cbpa.2016.06.002
CrossRef Google Scholar
|
[18]
|
Yuba A, Yazaki K, Tabata M, Honda G, Croteau R. 1996. cDNA cloning, characterization, and functional expression of 4S-(−)-limonene synthase from Perilla frutescens. Archives of Biochemistry and Biophysics 332:280−87 doi: 10.1006/abbi.1996.0343
CrossRef Google Scholar
|
[19]
|
Mau CJD, Karp F, Ito M, Honda G, Croteau RB. 2010. A candidate cDNA clone for (−)-limonene-7-hydroxylase from Perilla frutescens. Phytochemistry 71:373−79 doi: 10.1016/j.phytochem.2009.12.002
CrossRef Google Scholar
|
[20]
|
Fujiwara Y, Ito M. 2017. Molecular cloning and characterization of a Perilla frutescens cytochrome P450 enzyme that catalyzes the later steps of perillaldehyde biosynthesis. Phytochemistry 134:26−37 doi: 10.1016/j.phytochem.2016.11.009
CrossRef Google Scholar
|
[21]
|
Zhou P, Shao Y, Jiang Z, Dang J, Qu C, et al. 2023. The revealing of a novel double bond reductase related to perilla ketone biosynthesis in Perilla frutescens. BMC Plant Biology 23:345 doi: 10.1186/s12870-023-04345-1
CrossRef Google Scholar
|
[22]
|
Zhang Y, Shen Q, Leng L, Zhang D, Chen S, et al. 2021. Incipient diploidization of the medicinal plant Perilla within 10,000 years. Nature Communications 12:5508 doi: 10.1038/s41467-021-25681-6
CrossRef Google Scholar
|
[23]
|
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20 doi: 10.1093/bioinformatics/btu170
CrossRef Google Scholar
|
[24]
|
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21 doi: 10.1093/bioinformatics/bts635
CrossRef Google Scholar
|
[25]
|
Srinivasan KA, Virdee SK, McArthur AG. 2020. Strandedness during cDNA synthesis, the stranded parameter in htseq-count and analysis of RNA-Seq data. Briefings in Functional Genomics 19:339−42 doi: 10.1093/bfgp/elaa010
CrossRef Google Scholar
|
[26]
|
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8
CrossRef Google Scholar
|
[27]
|
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular biology and evolution 38:5825−29 doi: 10.1093/molbev/msab293
CrossRef Google Scholar
|
[28]
|
Wu T, Hu E, Xu S, Chen M, Guo P, et al. 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2:100141 doi: 10.1016/j.xinn.2021.100141
CrossRef Google Scholar
|
[29]
|
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, et al. 2019. The Pfam protein families database in 2019. Nucleic Acids Research 47:D427−D432 doi: 10.1093/nar/gky995
CrossRef Google Scholar
|
[30]
|
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547 doi: 10.1093/molbev/msy096
CrossRef Google Scholar
|
[31]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[32]
|
Wang Y, Li J, Paterson AH. 2013. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29:1458−60 doi: 10.1093/bioinformatics/btt150
CrossRef Google Scholar
|
[33]
|
Zhang T, Song C, Song L, Shang Z, Yang S, et al. 2017. RNA sequencing and coexpression analysis reveal key genes involved in α-linolenic acid biosynthesis in Perilla frutescens seed. International Journal of Molecular Sciences 18:2433 doi: 10.3390/ijms18112433
CrossRef Google Scholar
|
[34]
|
Wu D, Yang SM, Shang ZW, Xu J, Zhao DG, et al. 2021. Genome-wide analysis of the fatty acid desaturase gene family reveals the key role of PfFAD3 in α-linolenic acid biosynthesis in Perilla Seeds. Frontiers in Genetics 12:735862 doi: 10.3389/fgene.2021.735862
CrossRef Google Scholar
|
[35]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[36]
|
Mahmoud SS, Croteau RB. 2003. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proceedings of the National Academy of Sciences of the United States of America 100:14481−86 doi: 10.1073/pnas.2436325100
CrossRef Google Scholar
|
[37]
|
Parker MT, Zhong Y, Dai X, Wang S, Zhao P. 2014. Comparative genomic and transcriptomic analysis of terpene synthases in Arabidopsis and Medicago. IET Systems Biology 8:146−53 doi: 10.1049/iet-syb.2013.0032
CrossRef Google Scholar
|
[38]
|
Zhou F, Pichersky E. 2020. The complete functional characterisation of the terpene synthase family in tomato. New Phytologist 226:1341−60 doi: 10.1111/nph.16431
CrossRef Google Scholar
|
[39]
|
Chen Z, Vining KJ, Qi X, Yu X, Zheng Y, et al. 2021. Genome-wide analysis of terpene synthase gene family in Mentha longifolia and catalytic activity analysis of a single terpene synthase. Genes 12:518 doi: 10.3390/genes12040518
CrossRef Google Scholar
|
[40]
|
Li J, Wang Y, Dong Y, Zhang W, Wang D, et al. 2021. The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Horticulture Research 8:53 doi: 10.1038/s41438-021-00490-6
CrossRef Google Scholar
|
[41]
|
Tabata M. 2000. Genetics of monoterpene biosynthesis in Perilla plants. Plant Biotechnology 17:273−80 doi: 10.5511/plantbiotechnology.17.273
CrossRef Google Scholar
|
[42]
|
Singh N, Singh B, Rai V, Sidhu S, Singh AK, et al. 2017. Evolutionary insights based on SNP haplotypes of red pericarp, grain size and starch synthase genes in wild and cultivated rice. Frontiers in Plant Science 8:972 doi: 10.3389/fpls.2017.00972
CrossRef Google Scholar
|
[43]
|
Weeden NF, Lamb RC. 1985. Identification of Apple Cultivars by Isozyme Phenotypes. Journal of the American Society of Horticultural Science 110:509−15 doi: 10.21273/jashs.110.4.509
CrossRef Google Scholar
|
[44]
|
Drew DP, Andersen TB, Sweetman C, Møller BL, Ford C, et al. 2015. Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene. Journal of Experimental Botany 67:799−808 doi: 10.1093/jxb/erv491
CrossRef Google Scholar
|