[1]
|
Lim JZM, Ng NSL, Thomas C. 2017. Prevention and treatment of diabetic foot ulcers. Journal of the Royal Society of Medicine 110:104−9 doi: 10.1177/0141076816688346
CrossRef Google Scholar
|
[2]
|
Hauck S, Zager P, Halfter N, Wandel E, Torregrossa M, et al. 2021. Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioactive Materials 6:4342−59 doi: 10.1016/j.bioactmat.2021.04.026
CrossRef Google Scholar
|
[3]
|
Li Y, Fu R, Duan Z, Zhu C, Fan D. 2022. Artificial nonenzymatic antioxidant Mxene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano 16:7486−502 doi: 10.1021/acsnano.1c10575
CrossRef Google Scholar
|
[4]
|
Wang T, Li Y, Cornel EJ, Li C, Du J. 2021. Combined antioxidant-antibiotic treatment for effectively healing infected diabetic wounds based on polymer vesicles. ACS Nano 15:9027−38 doi: 10.1021/acsnano.1c02102
CrossRef Google Scholar
|
[5]
|
Chen H, Cheng Y, Tian J, Yang P, Zhang X, et al. 2020. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Science Advances 6:eaba4311 doi: 10.1126/sciadv.aba4311
CrossRef Google Scholar
|
[6]
|
Tu C, Lu H, Zhou T, Zhang W, Deng L, et al. 2022. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 286:121597 doi: 10.1016/j.biomaterials.2022.121597
CrossRef Google Scholar
|
[7]
|
Mao C, Xiang Y, Liu X, Cui Z, Yang X, et al. 2018. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 12:1747−59 doi: 10.1021/acsnano.7b08500
CrossRef Google Scholar
|
[8]
|
Zhang Z, Wang J, Luo Y, Li C, Sun Y, et al. 2023. A pH-responsive ZC-QPP hydrogel for synergistic antibacterial and antioxidant treatment to enhance wound healing. Journal of Materials Chemistry B 11:9300−10 doi: 10.1039/D3TB01567J
CrossRef Google Scholar
|
[9]
|
Dong R, Guo B. 2021. Smart wound dressings for wound healing. Nano Today 41:101290 doi: 10.1016/j.nantod.2021.101290
CrossRef Google Scholar
|
[10]
|
Xu Z, Han S, Gu Z, Wu J. 2020. Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing. Advanced Healthcare Materials 9:1901502 doi: 10.1002/adhm.201901502
CrossRef Google Scholar
|
[11]
|
Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal PK, et al. 2004. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25:1911−17 doi: 10.1016/S0142-9612(03)00625-2
CrossRef Google Scholar
|
[12]
|
Peng Y, He D, Ge X, Lu Y, Chai Y, et al. 2021. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bio active Materials 6:3109−3124 doi: 10.1016/j.bioactmat.2021.02.006
CrossRef Google Scholar
|
[13]
|
Choi H, Kim B, Jeong SH, Kim TY, Kim DP, et al. 2023. Microalgae-based biohybrid microrobot for accelerated diabetic wound healing. Small 19:2204617 doi: 10.1002/smll.202204617
CrossRef Google Scholar
|
[14]
|
Yuan Y, Fan D, Shen S, Ma X. 2022. An M2 macrophage-polarized anti-inflammatory hydrogel combined with mild heat stimulation for regulating chronic inflammation and impaired angiogenesis of diabetic wounds. Chemical Engineering Journal 433:133859 doi: 10.1016/j.cej.2021.133859
CrossRef Google Scholar
|
[15]
|
Alfei S, Schito GC, Schito AM, Zuccari G. 2024. Reactive oxygen species (ROS)-mediated antibacterial oxidative therapies: available methods to generate ROS and a novel option proposal. International Journal of Molecular Sciences 25:7182 doi: 10.3390/ijms25137182
CrossRef Google Scholar
|
[16]
|
Lu Y, Li H, Wang J, Yao M, Peng Y, et al. 2021. Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing. Advanced Functional Materials 31:2105749 doi: 10.1002/adfm.202105749
CrossRef Google Scholar
|
[17]
|
Shi T, Lu H, Zhu J, Zhou X, He C, et al. 2023. Naturally derived dual dynamic crosslinked multifunctional hydrogel for diabetic wound healing. Composites Part B - Engineering 257:110687 doi: 10.1016/j.compositesb.2023.110687
CrossRef Google Scholar
|
[18]
|
Hu B, Gao M, Boakye-Yiadom KO, Ho W, Yu W, et al. 2021. An intrinsically bioactive hydrogel with on-demand drug release behaviors for diabetic wound healing. Bioactive Materials 6:4592−606 doi: 10.1016/j.bioactmat.2021.04.040
CrossRef Google Scholar
|
[19]
|
Liang Y, He J, Guo B. 2021. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15:12687−722 doi: 10.1021/acsnano.1c04206
CrossRef Google Scholar
|
[20]
|
Hu C, Zhang F, Long L, Kong Q, Luo R, et al. 2020. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. Journal of Controlled Release 324:204−17 doi: 10.1016/j.jconrel.2020.05.010
CrossRef Google Scholar
|
[21]
|
Hu J, Hu Q, He X, Liu C, Kong Y, et al. 2020. Stimuli-responsive hydrogels with antibacterial activity assembled from guanosine, aminoglycoside, and a bifunctional anchor. Advanced Healthcare Materials 9:1901329 doi: 10.1002/adhm.201901329
CrossRef Google Scholar
|
[22]
|
Nonsuwan P, Matsugami A, Hayashi F, Hyon SH, Matsumura K. 2019. Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydrate Polymers 204:131−41 doi: 10.1016/j.carbpol.2018.09.081
CrossRef Google Scholar
|
[23]
|
Guan S, Zhang K, Cui L, Liang J, Li J, et al. 2022. Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration. Biomaterials Advances 133:112604 doi: 10.1016/j.msec.2021.112604
CrossRef Google Scholar
|
[24]
|
Wu Y, Wang Y, Long L, Hu C, Kong Q, et al. 2022. A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing. Journal of Controlled Release 341:147−65 doi: 10.1016/j.jconrel.2021.11.027
CrossRef Google Scholar
|
[25]
|
Albright V, Zhuk I, Wang YH, Selin V, van de Belt-Gritter B, et al. 2017. Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomaterialia 61:66−74 doi: 10.1016/j.actbio.2017.08.012
CrossRef Google Scholar
|
[26]
|
Fang X, Liu Y, Zhang M, Zhou S, Cui P, et al. 2022. Glucose oxidase loaded thermosensitive hydrogel as an antibacterial wound dressing. Journal of Drug Delivery Science and Technology 76:103791 doi: 10.1016/j.jddst.2022.103791
CrossRef Google Scholar
|
[27]
|
Wang L, Chen G, Fan L, Chen H, Zhao Y, et al. 2023. Biomimetic enzyme cascade structural color hydrogel microparticles for diabetic wound healing management. Advanced Science 10:2206900 doi: 10.1002/advs.202206900
CrossRef Google Scholar
|
[28]
|
Qi W, Yan X, Fei J, Wang A, Cui Y, et al. 2009. Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Bioma terials 30:2799−806 doi: 10.1016/j.biomaterials.2009.01.027
CrossRef Google Scholar
|
[29]
|
Wang Y, Wang J, Gao R, Liu X, Feng Z, et al. 2022. Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials 285:121538 doi: 10.1016/j.biomaterials.2022.121538
CrossRef Google Scholar
|
[30]
|
Khoury LR, Slawinski M, Collison DR, Popa I. 2020. Cation-induced shape programming and morphing in protein-based hydrogels. Science Advances 6:eaba6112 doi: 10.1126/sciadv.aba6112
CrossRef Google Scholar
|
[31]
|
Zhang Q, Liu Y, Yang G, Kong H, Guo L, et al. 2023. Recent advances in protein hydrogels: From design, structural and functional regulations to healthcare applications. Chemical Engineering Journal 451:138494 doi: 10.1016/j.cej.2022.138494
CrossRef Google Scholar
|
[32]
|
Jia Y, Li J. 2015. Molecular assembly of Schiff Base interactions: construction and application. Chemical Reviews 115:1597−621 doi: 10.1021/cr400559g
CrossRef Google Scholar
|
[33]
|
Liu W, Liu S, Sun M, Guo F, Wang P, et al. 2024. Glycopeptide-based multifunctional nanofibrous hydrogel that facilitates the healing of diabetic wounds infected with methicillin-resistant Staphylococcus aureus. Acta Biomaterialia 181:161−75 doi: 10.1016/j.actbio.2024.04.035
CrossRef Google Scholar
|
[34]
|
Zhou X, Zhao B, Wang L, Yang L, Chen H, et al. 2023. A glucose-responsive nitric oxide release hydrogel for infected diabetic wounds treatment. Journal of Controlled Release 359:147−60 doi: 10.1016/j.jconrel.2023.05.047
CrossRef Google Scholar
|
[35]
|
Hou F, Jiang W, Zhang Y, Tang J, Li D, et al. 2022. Biodegradable dual-crosslinked adhesive glue for fixation and promotion of osteogenesis. Chemical Engineering Journal 427:132000 doi: 10.1016/j.cej.2021.132000
CrossRef Google Scholar
|
[36]
|
Yin SH, Duan MP, Qian YR, Lv CY, Zang JC, et al. 2023. Regulatable and reversible native paramyosin hydrogels promote the wound healing of the skin in mice. Chemical Engineering Journal 462:142294 doi: 10.1016/j.cej.2023.142294
CrossRef Google Scholar
|
[37]
|
Zhang M, Chen G, Lei M, Lei J, Li D, et al. 2021. A pH-sensitive oxidized-dextran based double drug-loaded hydrogel with high antibacterial properties. International Journal of Biological Macromolecules 182:385−93 doi: 10.1016/j.ijbiomac.2021.03.169
CrossRef Google Scholar
|
[38]
|
Yan S, Wang T, Feng L, Zhu J, Zhang K, et al. 2014. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules 15:4495−508 doi: 10.1021/bm501313t
CrossRef Google Scholar
|
[39]
|
Huang Y, Mu L, Zhao X, Han Y, Guo B. 2022. Bacterial growth-induced tobramycin smart release self-healing hydrogel for Pseudomonas aeruginosa-infected burn wound healing. ACS Nano 16:13022−36 doi: 10.1021/acsnano.2c05557
CrossRef Google Scholar
|
[40]
|
Tan W, Long T, Wan Y, Li B, Xu Z, et al. 2023. Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing. Carbohydrate Polymers 312:120824 doi: 10.1016/j.carbpol.2023.120824
CrossRef Google Scholar
|
[41]
|
Lü SY, Gao CM, Xu XB, Bai X, Duan HG, et al. 2015. Injectable and Self-Healing Carbohydrate-Based Hydrogel for Cell Encapsulation. Acs Applied Materials & Interfaces 7:13029−37 doi: 10.1021/acsami.5b03143
CrossRef Google Scholar
|
[42]
|
Xue X, Hu Y, Deng Y, Su J. 2021. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Advanced Functional Materials 31:2009432 doi: 10.1002/adfm.202009432
CrossRef Google Scholar
|
[43]
|
Zhao Y, Li Z, Song S, Yang K, Liu H, et al. 2019. Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Advanced Functional Materials 29:1901474 doi: 10.1002/adfm.201901474
CrossRef Google Scholar
|
[44]
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. 2023. Self-healing injectable hydrogels for tissue regeneration. Chemical Reviews 123:834−873 doi: 10.1021/acs.chemrev.2c00179
CrossRef Google Scholar
|
[45]
|
Fu YJ, Shi YF, Wang LY, Zhao YF, Wang RK, et al. 2023. All-Natural Immunomodulatory Bioadhesive Hydrogel Promotes Angiogenesis and Diabetic Wound Healing by Regulating Macrophage Heterogeneity. Advanced Science 10:2206771 doi: 10.1002/advs.202206771
CrossRef Google Scholar
|
[46]
|
Han X, Chen S, Cai Z, Zhu Y, Yi W, et al. 2023. A Diagnostic and Therapeutic Hydrogel to Promote Vascularization via Blood Sugar Reduction for Wound Healing. Advanced Functional Materials 33:2213008 doi: 10.1002/adfm.202213008
CrossRef Google Scholar
|
[47]
|
Zhao L, Niu L, Liang H, Tan H, Liu C, et al. 2017. pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Applied Materials & Interfaces 9:37563−74 doi: 10.1021/acsami.7b09395
CrossRef Google Scholar
|
[48]
|
Wallace LA, Gwynne L, Jenkins T. 2019. Challenges and opportunities of pH in chronic wounds. Therapeutic Delivery 10:719−35 doi: 10.4155/tde-2019-0066
CrossRef Google Scholar
|
[49]
|
Shao Z, Yin T, Jiang J, He Y, Xiang T, et al. 2023. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioactive Materials 20:561−73 doi: 10.1016/j.bioactmat.2022.06.018
CrossRef Google Scholar
|
[50]
|
Hao J, Liu CX, Zhou L, Wu N, Sun MY, et al. 2024. Enhancing diabetic wound healing with a pH/glucose dual-responsive hydrogel for ROS clearance and antibacterial activity. International Journal of Biological Macromolecules 272:132935 doi: 10.1016/j.ijbiomac.2024.132935
CrossRef Google Scholar
|
[51]
|
Zhu S, Zhao B, Li M, Wang H, Zhu J, et al. 2023. Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioactive Materials 26:306−320 doi: 10.1016/j.bioactmat.2023.03.005
CrossRef Google Scholar
|
[52]
|
Yang Y, Zhao X, Yu J, Chen X, Wang R, et al. 2021. Bioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatment. Bioactive Materials 6:3962−75 doi: 10.1016/j.bioactmat.2021.04.007
CrossRef Google Scholar
|
[53]
|
Maleki A, He J, Bochani S, Nosrati V, Shahbazi MA, et al. 2021. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 15:18895−930 doi: 10.1021/acsnano.1c08334
CrossRef Google Scholar
|
[54]
|
Thorn CR, Carvalho-Wodarz CdS, Horstmann JC, Lehr CM, Prestidge CA, Thomas N. 2021. Tobramycin liquid crystal nanoparticles eradicate cystic fibrosis-related pseudomonas aeruginosa biofilms. Small 17:2100531 doi: 10.1002/smll.202100531
CrossRef Google Scholar
|
[55]
|
Zi Y, Zhu M, Li X, Xu Y, Wei H, et al. 2018. Effects of carboxyl and aldehyde groups on the antibacterial activity of oxidized amylose. Carbohydrate Polymers 192:118−25 doi: 10.1016/j.carbpol.2018.03.060
CrossRef Google Scholar
|
[56]
|
Furman BL. 2021. Streptozotocin-induced diabetic models in mice and rats. Current Protocols 1:e78 doi: 10.1002/cpz1.78
CrossRef Google Scholar
|
[57]
|
Deng M, Wu Y, Ren Y, Song H, Zheng L, et al. 2022. Clickable and smart drug delivery vehicles accelerate the healing of infected diabetic wounds. Journal of Controlled Release 350:613−29 doi: 10.1016/j.jconrel.2022.08.053
CrossRef Google Scholar
|
[58]
|
Hu C, Long L, Cao J, Zhang S, Wang Y. 2021. Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chemical Engineering Journal 411:128564 doi: 10.1016/j.cej.2021.128564
CrossRef Google Scholar
|
[59]
|
Li Y, Su L, Zhang Y, Liu Y, Huang F, et al. 2022. A guanosine-quadruplex hydrogel as cascade reaction container consuming endogenous glucose for infected wound treatment-a study in diabetic mice. Advanced Science 9:2103485 doi: 10.1002/advs.202103485
CrossRef Google Scholar
|
[60]
|
Wang Z, Dong Y, Wang Y. 2023. Collagen-based biomaterials for tissue engineering. ACS Biomaterials Science & Engineering 9:1132−50 doi: 10.1021/acsbiomaterials.2c00730
CrossRef Google Scholar
|
[61]
|
Azevedo F, Pessoa A, Moreira G, Dos Santos M, Liberti E, et al. 2016. Effect of topical insulin on second-degree burns in diabetic rats. Biological Research for Nursing 18:181−92 doi: 10.1177/1099800415592175
CrossRef Google Scholar
|
[62]
|
Eming SA, Brachvogel B, Odorisio T, Koch M. 2007. Regulation of angiogenesis: wound healing as a model. Progress in Histochemistry and Cytochemistry 42:115−70 doi: 10.1016/j.proghi.2007.06.001
CrossRef Google Scholar
|
[63]
|
Liang Y, Li M, Yang Y, Qiao L, Xu H, et al. 2022. pH/Glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano 16:3194−207 doi: 10.1021/acsnano.1c11040
CrossRef Google Scholar
|
[64]
|
Wynn TA, Vannella KM. 2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450−62 doi: 10.1016/j.immuni.2016.02.015
CrossRef Google Scholar
|